SURVEYOR GENERAL'S OFFICE.

ANNUAL REPORT
 Cander Dopartien oit the inewior.
of the
36503157811107

DEPARTMENT OF THE INTERIOR

FOR THEE YEAR

1891

PRINTED BY ORDER OF PARLIAMENT.

| OTTAWA:
PRINTED BY S. E. DAWSON, PRINTER TO THE QUEEN'S MOST HXCELLENT MAJESTY 1892.
[No. 13-1891.] Price 20 cents.

TABLE OF CONTENTS.

Report of the Deputy of the Minister of the Interior - - - - \quad| page. |
| ---: |
| ix |

PART I.-DOMINION LAANDS.
Report of H. H. Smith, Commissioner of Dominion Lands - - - 1

| do | Wm. Pearce, Superintendent of Mines | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| do | J. M. Gordon, Inspector of Dominion Lande Agrencies | - | - | - | 6 |

Annual statement of business transacted at the several Local Land Agencies in Manitoba, the North-West 'Territories and British Columbia
do G. U. Ryley, Clerk of Timber, Mineral and Grazing Lands - - $\quad 16$
Schedule showing names of Lessees of Grazing Lands, and areas 18
No. of cattle, horses and sheep in grazing districts of Alberta and Assiniboia
A.-Statement of receipts on account of Crown Timber - -
B.-Slatement of receipts on ascount of Grazing, Hay and Mineral Lands
C.-Statement of receipts from School Lands on account of Timber Dues and Hay - - - - - $\quad-\quad-$
D.-Statement showing receipts on account of Timber, Grazing, Hay and Mineral Lands, commencing with the fiscal year 1872-73 and ending 30th June, 1891
E.-Statement showing receipts on account of Timber; ${ }^{-}$Grazing, May and Mineral Lands, commencing with departmental yeur 1872-73 and ending 31st October, 1891
F.-Statement showing the quantity of Lumber, Shingles and Laths, manufactured from timber cut on what was known as the "Disputed Territory," under Government license, for the period from 1872 to the 31st December, 1888
G.-Statement showing the quantity of Lumber, Shingles and Laths, manufactured from Dominion Lands in the Province of Manitoba, under Government license, for the period from 1872 to the 31st December, 1890
H.-Statement showing the quantity of Lumber, Shingles and Laths, manufactured from timber cat on Domivion Lands within the District of Assiniboia, under Government license, from 1872 to 31st December, 1890
I.-Statement showing the quantity of Lumber, Shingles and Laths, manufactured from timber cut on Dominion Lands within the Disterct of Alberta, under Government license, for the period from 1872 to 31 st December, 1890 - -
J.-Statement showing the quantity of Lumber, Shingles and Laths, manufactured from timber cut on Dominion Lands within the District of Saskatchewan, under Government license, for the period from 1872 to the 31st December, 1890
K.-Statement showing the quantity of Lamber, Shingles and Laths, manufactured from timber cut on Dominion Lands, within the Railway Belt in British Columbia, for the period from 1884 to the 31st December, 1890
L.-Summary of above statements, slowing the total quantity of Lumber, Shingles and Lalhs, manufuctured from timber cut on Drminion Lands

Statement showing saw-mills operating under License in Manitoba and Assiniboia
Summary of correspondence and transactions at Crown Timber* Office, Winnipeg
do Crown Timber Agent, Edmonton

- - - - - - 36

Statement showing saw-mills operating under license in the Edmonton Agency
Statement of correspondence and transactions at Crown TimberOffice, Edmonton
do Crown Timber Agent, Prince Albert
do Statement of Receipta ai Crown Timber Office, Prince Alber
Statement showing the saw-mills operating under license in the Prince Albert Agency
Statement of correspondence and transactions at Crown Timber Office, Prince Albert
do Crown Timber Agent for British Columbia $\quad-\quad$ - $\quad-\quad$ -
do Crown Timber Agent for British Columbia $\quad-\quad \overline{\text { Statement of Receipts on acconnt of Crown Timber in British }}$ Columbia
Statement showing saw-mills entting timber on Dominion Lands in British Columbia - - $\quad-\quad-\quad-\quad-$
Statement of correspondence and transactions at Crown TimberOffice for British Columbia
Statement of Receipts at Crown Timber Office, Calgary - -
Statement showing saw-mills operating under license in the Calgary Agency
Statement of correspondence and transactions at Crown Timber Offico, Calgary
do Wm. Mills, in charge of Orinance and Admiralty Lands - -
been received
Statement of Receipts
A. Pinard, Accountant of the Department

A.-Statement of Receipts on account of Dominion Lands from

 the various agencies, doB.-Statement of Receipts on account of Ordnance Lands -
C. do do School Lands - -
D.-Statement of Fees reccived from Recristrars
E.-Statements of receipts on account of fines and forfeitures in the North-West Territories
F.-Statement of Receipts on account of Casuat Revenue - $\quad 57$
G. do do Dominion Lands from the various sources of Revenve - $-\quad-\quad-\quad-$ Appendix A-Statement showing the number of entries made at Head Office, and the Agency of the Temperance Colonization Society -
do B-Statement showing number of Ietters Pitent issued, and number of acres patented
mber, Shingles and 1 Dominion Lands, mbia, for the period the total quantity :tured from timber

- - -	29
	30
ce, Winnipeg	2
r License in Mani	
	33
s at Crown Timber	
- -- -	
- - -	36
e, Fdmonton	37
der license in the	38
s at Crown Timber	
- - - -	9,
	39
e, Prince Albert -	40
nder license in the	
- - -	41
3 at Crown 'limber	
- - -	42
	42
in British	43
m Dominion Lands	
-	44
; at Crown Timber	
-	45
: 0 , Calgary - -	45
der license in the	46
: at Orown Timber	
-	47
7 Lands	48
- -	50
hich moneys have	
	50
- - -	51
-	52
zinion Lands from	54
zance Lands	55
ol Lands	55
ars	56
; and forfeitures in	
- - -	56
tal Revenue	57
sinion Lands from	
- - -	58
de at Head Office, lization Society	59
atent issued, and	
-	60

jer, 1891.

	Totads.
279	3,409
62	1,058
24	353
7	55
1	22
5	36
7	30
1.	20
2	29
	15
	19
	12
	2
388	5,076

Department of the Interior, Topographical Surveys Branch, Otrawa, 12th February, 1892.

Sir,--The surveys performed under the Topographical Survejs Branch of the Department of the Interior have been of varied character. The primary object has been the division of land for the purpose of settlement, and hence the bulik of the work has consisted of block, township outline, and township subdivision surveys, together with surveys of parishes and town plots. Other surveys have from time to time, in connection with these, become necessary, such as truil surveys, surveys of Indian reserves, exploratory and micrometer surveys, triangulation and phototopographical surveys, determinations of latitndes and longitudes, \&c.

Altogether a very large amount of work has been performed, and although much of the information concerning it is contained in the reports of the Department of the Interior published yearly, yet the necessity of a general report of all the operations, for use as a book of reference, has become apparent.

With the hope of supplying this want, we have the honour to submit herewith the first two sections of such report. The first section contains a historical narrative of the surveys, with schedules showing the names of all surveyors employed, together with the work performed by each, also all trail surveys, reserves for the Hudson's Bay Company, Indian reserves surveyed under the Department of the Interior, micrometer and exploratory surveys, correction of resurveys, acreage of the yearly surveys, and all surveys of parishes, town plots and other miscellaneous work. It also contains a tist of all Dominion land and topographical surveyors.

The second section treats of the theory of the Dominion lands system of sur'vey, and contains a number of geodetic tables useful in calculations connected with sur-veys-under the system, and an explanation of the method of using them.

We have prepared this report in the hope that it will be found useful as a book of reference in all matters connected with the surveys, and to that end we have made it as complete as possible in the lines indicated.

It is proposed to supplement the information herein contained by the issue from time to time of additional sections giving fuller details of the various operations.

We have the honour to be, Sir,
Your obedient servants,

[^0]Survejor G̛eneral, Topographical Surveys Branch.

CONTENTS.

SECTION I

Purchase of Rupert's Land by the Dominion
Surveys prior to transfer of Rupert's Land.
Inception of surveys under Dominion GovernmentSystem first proposed.
Facts in support of proposed system
Adoption and marking of governing lines of proposed system
Change in system and reasons therefor.
Administration of Dominion lands placed under Secretary of State.1
Appointment of Col. Dennis as Surveyor General
Issue of the Manual of surveys and explanations regarding 2nd syst ssue of the Manual of surveys and.expla
Inception of surveys under 2nd system.
Surveys performed during season of 1869
Survey of the Winnipeg or Principal Meridia
Province of Manitoba created1
1
Surveys during the seasou of 1871
Appointment of Lindsay Russell, Esq., as Inspector of Surveys
Schedule of rates adopted for surveys6
6
Inception of survey of settlement belt parishes 6
Surveys during season of 1872 7
Commencement of the survey of the reserves for the Hudson's Bay Company 7
Adoption of system of daily pay for surveyors
Adoption of system of daily pay for surveyors 8 8
Issue of first map showing Dominion lands surveys 8
Pussage of Dominion Lands Act
Pussage of Dominion Lands Act 8
8
8 8
9
Commencement of survey of international boundary
Commencement of survey of international boundary
Surveys during season of 1873
9
Creation of the Department of the Interior, and transfer of Dominion Lands Branch to that
Creation of the Department of the Interior, and transfer of Dominion Lands Branch to that 9
Geological Survey attached to Department of the Interior
Geological Survey attached to Department of the Interior
Administration of Indian Affairs transferred to Department of Interior 9
9 9
9
Surveys during season of 1874
Surveys during season of 1874
Survey of outer two miles in settlement belt
9
9
Indsay Russel, Esq., appointed Assistant Surveyor General 9
Base-measuring apparatus for special survey 14
Surveys during season of 1875. 14
Operations of the special survey during 1875
15
15
Surveys during season of $\cdot 1876$ 16
Comparison of rates for township sub-division 16
17
Operations of special survey during 1876
Surveys during season of 1877 18
Surveys during season of 1878. 19
Survey of Prince Albert settlement. 19
Determination of latitude by W. F. King during 1878 19
Col. Dennis appointed Deputy Minister of the Interior 19
Lindsay Russell appointed Surveyor General. 20
Surveys during season of 1879 20
roposed change in manner of surreying block lines 21
Surveys during season of 1880
Surveys during season of 1880
21
21
Exploration of Souris Valley and adjacent country by Prof. Macoun. - 22Indian Branch detached from Department of the Interior and created a separate department.
Surveys during season of 1881 22
Changes in system of surfey and issue of 2nd edition of Manual
Changes in system of surfey and issue of 2nd edition of Manual
Appointment of E. Deville and W, F. King as inspectors of surveys
Appointment of E. Deville and W, F. King as inspectors of surveys
Exploration western slope of Duck Mountains and adjacent country by Prof. Macoun: 22
Operations of astronomical section of 23
tions
23
23
Surveys during season of 1882 23
E. Deville appointed Chief Inspector of Surveys
24
24
Marking of surveys with iron posts and tins. 24
Bonus of 15 per cent to surveyors for fyling returns without delay 94
Division of North-West Territories into districts Page
Mr. Lindsay Russell appointed Deputy Minister of the Interior 24
24
24
Surveys during season of 1883
Mr. A. M. Burgess appointed Deputy Minister of the Interior 24
25
Surveys during season of 1884 25
Inception of the survey of old trails 25
Dominion Lands system extended to railway helt in British Columbia
26
26
Commencement of Dominion Lauds survey in British Columbia 26
Retirement of Mr. Lindsay Russell from position of Surveyor General. 26
Surveys during season of 1885
26
26
26
Commencement of work of longitude determinations
Traverse of Canadian Pacific Railway line in British Columbia
26
26 27.

I. Deville appointed Surveyor (deneral

I. Deville appointed Surveyor (deneral
Inception of work of correcting existing surveys 27Surveys during season of 1886
Astrononical operations during the year 1886 27
inception of topographical survey of the Rocky Mountains 27
9
First attempt to use photography on surveys. ${ }_{6} 8$
Appointment of Mr. W. F. King as Chief Inspector of Surveys 28
Amendments in provisions of Manual regarding marking surveys in grazing districts 28
28
Determinations of latitudes and longitudes during 1887 28
Photo-topographical operations during the season.
28
28
Mr. J. S. Dennis appointed Inspector of Surveys. 28 28
abishment of photographic branch
abishment of photographic branch
Correction surveys during
Expedition sent to Alaska. 28
Surveys during the season of 1888 29
Determinations of latitudes and longitudes during 1888 29
Exploration surveys during 1888.
29
29
Photo-topographical surveys during 1888 30
Notes on the surveys, etc. 30

APPENDIX.

Schedule No. 1-Surveyors employed and work accomplished during season of 1869........ 32

SECTION II.

Chapter I.

General Description of the System of Survey.
Page
Size of township 101
Governing lines-Initial meridian and base lines 101
Meridian township boundaries 101
Correction lines 101Northern and southern boundaries of townships
Lengths of township boundaries and angles of townships. 101
Differences between the first, second and third systems of survey. Differences between the first, second and third systems of surve 102101
Position of corner posts with reference to the road allowances 102Fourth system in railway belt in British Columbia
Advantage of the system of survey 103
General remarks concerning the tables103
Limits of the different systems of survey. 104

Chapter II.

Construction and Use of the Tables.

Table I.-Lengths of arcs of meridian, parallel, \&c., in different latitudes 104
Table II.-Corrections to Table I. for change in elements of figure of earth 106
Table III.-Latitudes of base and correction lines and lengths of arcs of meridian, parallel, \&c., for the lst and 2nd systems of survey 107
Table IV.-Latitudes of base and correction lines, \&c., for 3rd and 4th systems of survey.. 108
Table V.-Chord azimuths, \&c., for base lines, lst and 2nd systems of survey. 109
Table VI.-Chord azimuths, \&c., for base lines, 3rd and 4th systems of survey 110
Table VII.-Chord azimuths, jogs, \&c., for correction lines, 1st and 2nd systems of survey 110
Table VIII.-Chord azimuths, jogs, \&c., for correction lines, 3rd and 4th systems of survey 111
Tábie TX.-Lätifides and widths in chains of northern boundaries of sections in lst and 2nd systems of survey. 111
Table X.-Latitudes and widths in chains of northern boundaries of sections in 3rd and 4th systems of survey 112
Table XI.-To reduce chains to decimals of a township side 112
TABLE XII.- Correction to widths of roads on correction lines on account of curvature. 112
Table XIII. -Differences of latitude between township corners and section and quarter section corners. 113

Charter III.

Problems connected with the Systen of Survey.

Correction for height above sea level. -Latitudes and longitudes of points in the system :- Latitude 114
Longitude, 3rd system 115
Longitude, lst system 115
Longitude, 2nd and 4th systems 116
Effect of errors of survey 116
To find the position with regard to the survey system of a point given in latitude and longitude :-
2nd, 3rd and 4th systems 116
lst system 117
Fractional township or range between parts of the country surveyed under different systems of survey :-
Fractional township 117
Fractional range. 117
Example 118
Example. 119
Fractional sections adjoining an initial meridian :-
Longitudes of the initial meridians 120
Example of the calculation 120

viii

Chapter IV

Solutions of some Problems in Practical Geodesy.

Given the latitude and longitude of a point and distance and azimuth to another point, Page
find the latitude and longitude of the latter and the re and azimuth to another point, to Spherical solution (for short distances) Correction for spheroidal figure
Fore accurate formule for long distances
121
121
Formula in terms of rectangular co-ordinates 121
Given the latitudes a 122
their
Given the latitude of one point, the of one point from another, to find the distance 122
tude, to find the distance:123
Trigonometrical levelling
 elevation or depression. ..124124

Tables.
Appendix
\qquad

THEORY OF THE SYSTEM OF SURVEY

OF
DOMINION LANDS

GEODETIC TABLES AND NOTES ON THEIR USE

BY
W. F. KING, B.A., D.T.S.,

Chief Astronomer of the Departhignt of the Interior.

SECTION II.

THEORY OF THE SYSTEM OF SURVEY OF DOMINION LANDS.

Ceapter I.-General Desoription of the System. Size of the Township.

In the Dominion Lands surveys, the township contains thirty-six sections, each approximately one mile square, together with certain allowances for roads, and measures on each side six miles plus the road allowances.

Governing Lines—Initial Meridians and Base Lines.

The lines upon which the surveys are based are certain Principal or Initial Meridians which run from the International Boundary, or 49th parallel of latitude, northward indefinitely.

Along these meridians are placed the monuments marking the section and township corners in regular order northward from the boundary, from which also the townships are numbered.

There are also certain lines, called base lines, which run westward or eastward from the Initial Meridians, starting from them at distances apart of four townships; so that, the International Boundary Line being the first base line, the second base line lies between townships 4 and 5 , the third between townships 8 and 9 , and so on.

These base lines are surveyed as chords of the latitude circles which pass through their intersections with the Initial Meridian. The chords are one township (six miles together with the roads) in length, and hence an angle occurs on the base line-at each township corner.- Along the-base-lines, as on-the Initial Meridians, the section and township corner monuments are placed at their regular distances.

Meridian Boundaries.

The eastern and western boundaries of townships are true meridians which start from the base line and are continued on each side thereof for two townships, when they encounter the meridians drawn in the same way from the next base line, but do not meet them exactly, since, on account of the convergence and divergence of meridians, the extremity of the line drawn south from the northerly base line passes to the west of that drawn north from the southerly base line.

Correction Lines.

Hence a "jog" occurs on that township line which lies midway between the base lines. This township line is called a correction line, for on it not only the jogs due to the system itself, bat also all errors in survey, whether in the chainage or in the azimuth of the lines, are allowed to fall and are so prevented from accumulating to such an extert as to deform other townships except those on whose outlines they occur.

Northern and Southern Boundaries of Townships.

The northern and southern boundaries of townships are straight lines (or great circles of the sphere) joining the corresponding points on the east and west meridian boundaries.

Form and Dimensions of Townships.

Townships are therefore quadrilaterals, having their east and west sides true meridians, and in length equal to six "sections" (that is six miles together with the roads), and having their north and south sides inclined at equal angles to these meri-
dians, while the northern boundary is somewhat shorter than the southern boundary, these lengths varying from 480 chains plus the roads on the base line to about 180 links more on the next corrention line south, and about 180 links less on the next one to the north. The angles of the township differ from 90° by about 4^{\prime} only.

These are the theoretioal dimensions and form of the township. Of course, the lengths of the lines and the magnitude of the angles may differ from theory from the effect of errors in surveying, but the closings on correction lines cut out these errors and prevent them from so accumulating as to materially deform tho townships.

Townships are designated by their numbers counting north from the 49th parallel with the number of the "Range" in which they lie, these ranges being counted east or west from tho Initial Meridian.

Different Systems of Survey.

Since the surveys in Manitoba and the Western Territories of Canada were initiated in 1870, changes have been made from time to time in the system, as regards the number and width of the road allowances, as well as in the manner of surveying townships and sections. Thero have thus been three systems of surver, generally called the first, second and third systems from their order in time.

Distinctions between the Systems.

In the first and second systems the roads are ore and a half chains wide, and are placed between all sections on both north and south, and east and west lines.

In the third system, which covers the entire area of Manitoba and the Western Territories, except the comparatively small area previously surveyed under the first and second systems, the roads are only one chain wide, and are placed along each alternate east and west section line, and along each north aud south line.

So the townships of the first and second systems are 489 chains each way, while those of the third system are 483 chains from north to south, and 486 from east to west (these widths boing, as above explained, subject to increase or decrease from divergence or convergence of meridians).

The second system differs from the first in the manner of subdividing the township into sections. In the first system, the interior lines forming the eastern boundaries of sections are drawn parallel to the eastern boundary of the township, so that all the deficiency or surplus caused by convergence of meridians, is left in the tier of quarter sections adjoining the western boundary of the township.

In the second system the eastern boundaries of sections are true meridians.
In the third system also the interior lines are true meridians.
In all three systems the northern and southern boundaries of sectionsare straight lines connecting points on the eastern or western boundaries, which have been established by chuinage.

In all the systems the sections in a townehip are designated by numbers from 1 to 36 , beginning with 1 at the south-east corner of the township and counting west and east alternately across the township to 36 in the north-east corner.

Position of Posts with regard to the Road Allowances.

The posts for section corners are piaced on the south and west sides of the road allowance, each section post governing the corner of four sections, except on correction lines, where posts stand on the nortb side of the road to mark the boundaries of sections on the north side of the road. Also on the tines between different systems of surver, posts are placed ou both sides of the road allowance.

But, in general, the post marks the south or west side of a road allowance, or in other words, stands at the north-east corner of a section. The quantities given in the appended tables always refer, unless otherwise stated, to the northern and eastern boundaries of sections or townships.
uthern boundary, line to about 180 ${ }^{3}$ less on the next bout 4' only. - Of course, the rom theory from nes cut out these eform tho town-
h from the 49 th sse ranges being
of Canada were rstem, as regards ner of surveying arver, generally
ains wide, and d west lines. ud the Western I under the first lef ong each sach way, while 6 from east to r decrease from
ding the townig the eastern the township, ns, is left in the .ip. meridians.
insare straight ave been estab-
ambers from 1 counting west r.
les of the road :ept on correc. le boundaries ferent systems
allowance, or tities given in rn and eastern

Fourth System of Survey.

There is a fourth system ofsurvey, which is in force in the Canadian Pacific Railway belt in British Columbia. This system is exactly similar to the third system, as to the manner of surveying townships, and the townships are of the same dimensions; but the roads are thrown into the sections, so that every section measures $80 \cdot 50$ chains from north to south, and 81 from east to west, subject to deficiency or surplus from converging or diverging meridians.

Thus in the fourth system the quarter section and section posts on a base line, beginning at the easterly corner of a township and going west, stand at distances $40.50,40.50,40.50,40.50$, \&cc., while in the third system they stand at $40,41,40,41$, $\& c$., the only difference being in the position of the quarter section posts. On the meridian outline of a township, in the fourth system, beginning at the southerly corner and going north, the posts stand at $40.25,40.25,40.25,40.25$, \&c., while in the third system they stand at $41,40,40,40$, \&c. Here there is a difference in the position of the quarter section corners, and each alternate section corner. The greatest difference in the position of any post is 75 links. 'l'he tables made for the third system, therefore, answer for the fourth also, except the tables of latitades and longitudes, which will require correction in cases where the highest degree of accuracy is desired.

Fifth System of Survey.

This system is applied to the survey of certain townships in the lower valley of the Fraser River in British Columbia. There are no roads. Each section is 80 chains square, and the townships, of 36 sections each, are based upon the 49 th parallel and an Initial Meridian called the Coast Meridian.

Advantages of the Dominion Lands System of Survey.

Some of the advantages of the Dominion Lands system of eurvey (especially the third system) are these:-.......veyors' transit lines), and the interior lines also are straight for the greatest possible distance. The straightness of lines greatly facilitates the picking up of a line and its re-establishment when some of the posts have been removed or destroyed.

Directions of analogous lines in two townships or two sections are the same, or nearly so. This simplifies the original survey and facilitates resurvey. Lines are also referred to the astronomic meridian, thereby avoiding the confusions and errors arising in many of the older settled parts of the Dominion from the use of the variable magnetic meridian.

The parcels of land are, as nearly as possible, equal in area and similar in form, and permit of a simple system of numbering, by which descriptions are facilitated. The parcels of land are also square, or nearly so-the shape most suitable, on the whole, for farms.

The surveys of different townships and different parts of the country are independent; or nearly so. Errors are cut out, and not carried forward throughout the system, and the survey of an isolated tract may be made without waiting for the complete survey of all the country intervening between it and the initial point of the system, and without fear of a gore or overlap, when the intermediate district is surveyed.

Tables.

Another result from the similarity of townships to each other is the simplicity of the tables giving the azimuths and lengths of lines. Such tables are indispensable in surveys to be made on a very large scale and by a great number of surveyors.

Tabies of azimuths and lengths of lines were calculated by the writer, and published as an appendix in the Annual Report of the Minister of Interior for 1879. These tables were calculated for the first and second systems of survey.

In 1881 the change in the system of survey necessitated a recalculation, so that the tables might serve for the third system of survey. The new tables were printed in the Manual of Surveys issued by direction of the Minister of Interior in 1881 (a second edition in 1883).

Since the tracts of country set aside for the first and second systems have not yet been completely surveyed, it has been deemed advisable to reprint here the tables for the first and second systems along with those of the third system for the sake of ready reference. The tables in the appended collection have been carefully checked. Table I, the general geodetic table, not referring to any particular system of survey, has been carefully recomputed, and has been extended so as to cover the whole of Canada from its most southerly point, Point Pelee, in Lake Erie, in latitude 42°, to latitude 70°.

Limits of the Different Systems of Survey.

The operation of the first system of survey is restricted to the area bounded as followe, viz: -

To the sonth by the International Boandary Line; to the west by the Second Meridian as far as the eighth correction line; by said correction line as far as the meridian between Ranges 28 and 29 west of the Principal Meridian; by said meridian, between Rangos 28 and 29 , as far as the seventh correction line; by said correction line as far as the meridian between Ranges 7 and 8, east of Principal Meridian; by said meridian, between Ranges 7 and 8 , as far as the north boundary of Township 19; by the north boundary of Township 19, in Ranges 8,9 and 10 , east of the Principal Meridian as far as the meridian between Ranges 10 and 11, east of the Principal Meridian; by said meridian, between Ranges 10 and 11, as far as the third correction line; by said correction line as far as the eastern boundary of the Province of Manitoba; by said eastern boundary as far as the International Boundary Line.

Also 'Townships 44, R. 21; Tp. 45, R. 21, 22, 27, 28; Tps. 46 and 47, R. 25, 26, 27 and 28; Tp. 47, R. 24, and Tp. 48, R. 24, 25, 26 and 27, west of the Second Meridian.

Towniphp 42 to 47 inclusive, R. 1; and Tps. 43 and 44, R. 2 and 3, west of the Third Meridian.

The second system of survey is similar in all respects to the first system, except in regard to the deficiency or surplus from converging or diverging meridians which is distribated equally between all quarter sections as in the actual system.

The operation of the second system of survey is restricted to Tps. 1 and 2, R. 1 to 8 inclusive; Tps. 19 to 30, R. 1 to 12 inclusive; and Tps. 27 to 30, R. 13 to 16 inclusive; the above ranges being all west of the Second Meridian.

The fourth system includes the belt twenty miles on each side of the Canadian Pacific Railway, west of the summit of the Rocky Mountains.

The fifth system, as already stated, applies to a few townships only in southwestern British Columbia.

The third system is applied to all Dominion lands not included in the first, second, fourth and fifth systems.

CHAPTER II.

CONSTRUCTION AND USE OF THE TABLES.

Table I.

Length of Arcs of Meridians, Parallel, \&c., in Different Latitudes.

According to Col. A. R. Clarke, R.E., in his "Comparison of Standards of Length" (1866), the spheroid of revolution most nearly approaching the form of the earth has for its major or equatorial semi-uxis 20926062 feet, and for its minor or polar semi-axis 20855121 feet.

Iculation, so that bles were printed aterior in 1881 (a systems have not reprint here the :d system for the ve been carefully articular system 30 as to cover the e Erie, in latitude
area bounded as
st by the Second ine as far as the my said meridian, 7 said corroction sal Meridian; by of Township 19; of the Principal of the Principal , third correction the rovince of and Line. nd 47, R. 25, 26, lecond Meridian. ad 3, west of the t system, except meridians which rstem.
ps. 1 and 2, R. 1 3 30, R. 13 to 16 of the Canadian s only in southded in the first,

:tudes.

f Standards of the form of the or its minor or

Representing the major and minor axis by a and b respectively, we have for the compression, $C=\frac{a-b}{a}=\frac{1}{394 \cdot 98}$, and the eccentricity e is given by the formula

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{1}{148} \text { nearly. }
$$

The unit of measure in the Dominiou Lands surveys is the Gunter's, or sixtysix feet chain. The equatorial semi-axis in chains is $317061 \cdot 545+$

Representing by ψ the geographical latitude of a place, or the angle which its vertical line makes with the plane of the equator, we have for the radius of curvature of the meridian

$$
R=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \mathscr{L}\right)^{\frac{3}{2}}}
$$

for the length of the normal to the meridian terminated by the minor axis

$$
N=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}
$$

and for the radius of the parallel of latitude Φ

$$
P=N \cos \phi
$$

The length in chains of one second of latitude is equal to $R \sin 1^{\prime \prime}$; one second of the great circle perpendicular to the meridiau is equal to $N \sin 1^{\prime \prime}$; and one second of longitude is equal to P sin $1^{\prime \prime}$. The logarithms of these quantities are placed in the second, third and fourth columns of Table I. They have been calculated by means of the logarithmic expansions of R and N.

Thus putting n for $\frac{a-b}{a+b}$ we have
$\log \left(\dot{R} \sin 1^{\prime \prime}\right)=\log a+\log \sin 1^{\prime \prime}-M\left(n+\frac{3 n^{2}}{2}\right)$ $-3-\mathrm{ME}-\left(n \cos 2 \theta-\frac{n^{2}}{2}-\cos -4-\psi\right)+\cos$
where M is the modulus of the common system of logarithms, and powers of n higher than the second are neglected as being insensible in the eighth decimal place.

Substituting the value of a in chains, as given above, and taking

$$
n=\frac{a-b}{a-b}=\frac{1}{588 \cdot 96}, \text { we get }
$$

$\log \left(R \sin 1^{\prime \prime}\right)=0.18597916-0.00221218 \cos 2 \Phi+0 \cdot 00000188 \cos 4 \Phi$.
In calculating the two last terms by logarithms tive places are sufficient.
For $N \sin 1^{\prime \prime}$ we have
$\log \left(N \sin 1^{\prime \prime}\right)=\frac{1}{3} \log \left(R \sin 1^{\prime \prime}\right)+\frac{2}{3}\left\{\log a+\log \sin 1^{\prime \prime}+2 M n\right\}$
$=\frac{1}{3} \log \left(R \sin 1^{\prime \prime}\right)+0 \cdot 125+6215$.
For $P \sin 1^{\prime \frac{3}{3}} ; \log P \sin 1^{\prime \prime}=\log \left(N \sin 1^{\prime \prime}\right)+\log \cos \phi$.
The calculation has been made to eight places of decimals to ensure accuracy in the seventh place. In tabulating, the eighth figure has been dropped.

The calculation of the logarithms of R sin $1^{\prime \prime}$ and $N \sin 1^{\prime \prime}$ has also been made directly from the formulæ for R and N, by the use of a subsidiary angle.

Thus, finding an angle ψ such that $\sin \psi=e \sin \phi$ we have
$R \sin 1^{\prime \prime}=a\left(1-e^{2}\right) \sec ^{3} \Psi \sin 1^{\prime \prime}$
$N \sin 1^{\prime \prime}=a \sec \psi \sin 1^{\prime \prime}$.
Seven figure logarithms were used, and consequently the results could not be depended upon to the seventh figure, but they have been serviceable as a check upon the series computation.
$\log N \sin 1^{\prime \prime}, \log P \sin 1^{\prime \prime}$ and $\log R \sin 1^{\prime \prime}$ are given in the table for every 10^{\prime} of latitude from 42° to 70°. Their values for intermediate latitudes can be obtained by simple interpolation. Where, however, $\log P \sin 1^{\prime \prime}$ is required with accuracy for an intermediate latitude, it is better first to obtain $\log N \sin 1^{\prime \prime}$ for that latitude by interpolation from the table and then to add $\log \cos \underset{\Phi}{ }$.

Under the heading "Chains in 1 "" are given the natural numbers corresponding to the logarithms of R sin $1^{\prime \prime}$ and P sin $1^{\prime \prime}$. These natural numbers are usoful in reducing small differences of latitude and longitude to chains by simple multiplication, being preferable in many cases to the logarithms.

The converse operation of reducing short distances north and south or east and west to seconds of latitude or longitude may be performed by multiplying by the quantities in the two colnmens headed "seconds in one chain." These columns contain the reciprocals of the quantities in the columns "chains in one second."

In the last two columns of the table are given the lengths of one degree of latitude and longitude in English miles.

Radius of Curvature of a Section of the Spheroid inclined at any angle to a Meridian.

In some operations it is necessary to find the radius of curvature of the trace on the ear'th's surface of a "straight" or "trausit" line making a given angle with
the meridian.

Representing this radius of carvature by S, and θ being the angle with the meridian, we have the formula

$$
\frac{1}{S}=\frac{\cos ^{2} \theta}{R}+\frac{\sin ^{2} \theta}{N}
$$

and introducing an auxiliary angle X determined by the formula

$$
\begin{aligned}
& \tan X=\frac{\sqrt{R \sin 1^{\prime \prime}}}{\sqrt{N \sin 1^{\prime \prime}}} \tan \theta, \text { we have } \\
& S \sin 1^{\prime \prime}=N \sin 1^{\prime \prime} \frac{\sin ^{2} X}{\sin ^{2} \theta}
\end{aligned}
$$

a formula adapted for ready calculation by means of logarithms.

Radius of Spherical Curvature.

The mean of the values of S when θ is given all possible values is $\sqrt{\bar{N} R}$. This is the radius of curvature of the surface or the radius of the sphere to the surface at a given point. Its logarithm is readily found from Table I, being the arithmetical mean of the logarithms of N and R.

Tablae II.
Corrections to Table I for Change in Elements of Figure of Earth.
In Table I the data used are Clarke's 1866 values, viz. :-

$$
\begin{aligned}
& a=20926062 \text { feet } \\
& n=\frac{1}{588 \cdot 96}
\end{aligned}
$$

and all the following tables are based on Table I, and therefore on these values. Clarke's later values (Geodesy, 1888) are,

$$
\begin{aligned}
& a=20926202 \text { feet. } \\
& n=\frac{1}{585 \cdot 93}
\end{aligned}
$$

nbers correspondumbers are useful - simple multipli-
south or east and altiplying by the lese columns cone second." ne degree of lati-
ny angle to a
ure of the trace siven angle with
angle with the
tlues is $\sqrt{\overline{N R}}$.
ere to the sure I, being the

ırth.

If, for any purpose, it is desired to use these values, Table I can be corrected by means of Table II, which has been computed thus:

Differentiating the formulæ,
$\log R \sin 1^{\prime \prime}=\log a+\log \sin 1^{\prime \prime}--M\left(n+\frac{3}{2} n^{2}\right)-3 M n \cos 2 \Phi+\frac{3}{2} M n^{2} \cos 4 \Phi$.
$\log N \sin 1^{\prime \prime}=\log a+\log \sin 1^{\prime \prime}+M\left(n-\frac{n^{2}}{2}\right)-M n \cos 2 \Phi+\frac{1}{2} M n^{2} \cos 4 \Phi$ and patting $\frac{1}{n}=p$, we have

$$
\begin{aligned}
& d\left(\log R \sin 1^{\prime \prime}\right)=M \frac{d a}{a}+M n^{2} d p+3 M n^{2} \cos 2 \Phi d p \\
& d\left(\log N \sin 1^{\prime \prime}\right)=M \frac{d a}{a}-M n^{2} d p+M n^{2} \cos 2 \Phi d p
\end{aligned}
$$

M being the modulus of the common system of logarithms. Terms involving the cubes and higher powers of n aie insensible and may be neglected.

To change Clarke's earlier to his later values, we have

$$
\begin{aligned}
d a & =+140(\mathrm{feet}) \\
\bar{d} p & =-3.03 \\
a & =20926062 \text { (feet) } \\
n & =\frac{1}{588.96} \\
\text { and } M & =0.43429448
\end{aligned}
$$

whence $d \log \left(R \sin 1^{\prime \prime}\right)=-00000089-\cdot 00001138 \cos 2 \Phi$
$d \log \left(N \sin 1^{\prime \prime}\right)=+00000670 \div 00000379 \cos 2 \Phi$
These quantities are tabulated in Table II, with the proper signs of application to $\log R \sin 1^{\prime \prime}$ and $\log N \sin 1^{\prime \prime}$ in Table I .

Table III.
Latitudes of Base and Correction Lines and Lengths of Arcs of Meridian, Parallel, \&c., for First and Second Systems of Survey.
This table is constructed for the first and second systems of survey only. It accordingly stops at the 13 th Base, Township 48, north of which there are no surveys under these systems.

Each township measuring 489 chains each way, the 1st correction lineis 978 chains north of the 49th parallel.

The latitude of the 1st correction line is therefore $49^{\circ}+\frac{978}{R \sin 1^{\prime \prime}}$.
Here $\boldsymbol{R} \sin 1^{\prime \prime}$ must be taken from Table I for the middle latitude between the 1st base and the 1st correction line. For accuracy it is therefore necessary to compute an approximate difference of latitude, using an approximate value of $R \sin 1^{\prime \prime}$. For instance R sin $1^{\prime \prime}$ may be taken from the table for latitude 49°.

The approximate difference of latitude being thus determined, the middle latitude is found from it (this being a sufficiently olose approximation), and the final R sin $1^{\prime \prime}$ is taken from Table I for that latitude. Then dividing 978 by this we have a very close approximation to the difference of latitude between the base and the correction line.

Firom the latitude thus obtained of the 1st correction line, that of the 2nd base line is found by a similar process, and so on in succession as far as the table extends.

The table is checked by applying the same process to a longer distance than 978 chains. For example the latitude of the 6 th base can be directly determined from that of the first by using 9,780 chains instead of 978 . When long distances are thus taken, a second approximation to the middle latitude may become necessary.

The columos $\log N$ sin $1^{\prime \prime}$ and $\log R$ ain $1^{\prime \prime}$ are taken from Table I by interpolation, and $\log P$ sin $1^{\prime \prime}$ is found by adding $\log \cos \Phi$ to $\log N$ sin $1^{\prime \prime}$.

The width of a township along a base line is 489 chains. The longitude corresponding to this length measured along the parallel of latitude is given in the colvmn headed "Longitude covered by 489 chains westing," not only for the base lines but also for the correction lines.

The longitude for 489 chains, along a base line, is the longitude covered by one range of townships. Along a correction line it does not correspond to the longitude covered by a range, since the width of a township along a correction line is greater or less than 489 chains according as the township north or south of the correction line is considered. The tabulated quantity however for correction lines can be used to calculate the narrowing or widening of sections at the correction lines.

The township width 489 chains is measured along the base line which has such azimuth that ite terminal point falls in the same latitude as its initial point.

Thus every township corner along a base line has the same latitude, and the base line is a succession of chords of the latitude circle.

The difference of longitude between one township corner and the next is given by the formula

$$
d \lambda=\frac{486}{P \sin 1^{\prime \prime}}
$$

It is assumed here that the chord of the arc of the latitude circle is equal to the arc. That the difference between the chord and the arc is inappreciable may be shown thus:

By spherical trigonometry

$$
\sin \frac{\text { chord }}{2 N}=\sin \frac{d \lambda}{2} \cos \Phi
$$

whence chord $\xlongequal{\cong} N \cos \Phi d \lambda-N \cos \Phi \sin ^{2} \Phi \frac{d \lambda^{3}}{24}$

$$
=\operatorname{arc}-\operatorname{arc} \times \frac{d \grave{\lambda}^{2}}{24} \sin ^{2} \Phi
$$

So that the difference between the chord and the arc is equal to

$$
\operatorname{arc} \times \frac{d \lambda^{2}}{24} \sin ^{2} \Phi
$$

d. being in a circular measure.

For a chord of 489 chains this amounts to less than oue-hundredth of a link.
The chord always lies north of the arc. The distance between them is greatest at their middle points; amounting there to about 10 links. Hence, at the International boundary line, which is the first base line, since the actual territorial boundary is the curve, and the base line a series of chorde, the road allowance which lies along the north side of this base is increased in width by 10 links at the middle of the chords.

The non-coincidence of the chord and arc also has the effect of increasing and decreasing the widths of roads on correction lines. This will be referred to again.

In the first column of Table III are given, for convenience, the numbers of the townships corresponding to the several base and correction lines. Thus the sixth base is the northern boundary of Township 20, and so on.

Table IV.

Latitudes of Base and Correction Lines, \&c., for 3rd and 4th Systems of Survey.

This is exactly similar to Table III, except that it is made for the third system of survey, where the widthe of townships are 486 instead of 489 ohains, and their depthe, in a north and south direction, 483 instead of 489 chains.

This table also applies, without change, to the fourth system (British Columbia).
In this table, as well as in Table III, the latitudes given are those of the line of posts on the south side of the road allowance. To get the latitude of the posts north

3 longitude corresiven in the column the base lines but
ide covered by one Id to the longitude ion line is greater 1 of the correction a lines can be used in lines.
e line which has ts initial point.
latitude, and the
the next is given
le is equal to the ?reciable may be
dth of a link.
them is greatest , at the Interna:itorial boundary which lies along e middle of the
' increasing and eferred to again. numbers of the Thus the sixth ns of Survey.
he third system lains, and their
itish Columbia). se of the line of 'the posts north
of the road on correction lines, the latitude of the correction line, as given in the table, must be corrected by adding the equivalent in latitude of the width of the road, i.e., one chain and a-half for the first and second systems (Table III), and one chain for the third system (Table IV).

Table V.

Chord Azimuths, dec., for Base Lines, First and Second Systems of Survey.
The extremities of the township chord, as above stated, are in the same latitude. Hence the chord is equally inclined to the meridians passing through its terminal points, and its azimuth, east or west of north, is equal to the complement of half the change in azimuth, that is, of half the "convergence of meridians."

Let $d A$ represent the change in azimuth or convergence of meridians, $d \lambda$ the difference of longitude, and Φ the latitude.

Then, by apherical trigonometry,
$\tan \frac{1}{2} d A=\tan \frac{1}{2} d \lambda \sin \phi$,
whence, by expansion of the tangents in terms of the arcs,

$$
d A=d \lambda \sin \Phi+\frac{d \lambda^{3}}{12} \sin \Phi \cos ^{2} \Phi
$$

or, if $d A$ and $d \lambda$ be expressed in seconds,

$$
d A=d \lambda \sin \Phi+\frac{d \lambda^{3}}{12} \sin \Phi \cos ^{2} \Phi \sin ^{2} 1^{\prime \prime}
$$

The second term is inappreciable, amounting in latitude 51° to less than one teu-thousandth of a second.

$$
\therefore d A=d \lambda \sin \Phi .
$$

The convergence or "deflection" (dA), given in Table V, is thus calculated from the difference of longitude ($d \lambda$) in Table III.

The "chord azimuth" is the complement of half the deflection.
The chord azimuth and the deflection are given in the table in degrees, minutes and seconds, as well as in decimals of a degree, for sexagesimally and decimally divided instruments respectively.

In the survey of a base line, the surveyor, when he arrives at a township corner, deflects his line to the north through an angle equal to the "deflection," and thus establishes in azimuth the chord across the next range of townships.

This deflection angle may be turned with the instrument, but more readily by the use of the "deflection offsets" in the table. The tabulated offset is the linear distance in inches between one of the chords and the prolongation of the other, at one chain from the township corver.

Their distance apart at any point is found by multiplying the tabulated offset by the distance, expressed in chains, of the point from the township corner.

For example, if the instrument is standing on the prolongation of the first chord at 5 chains past the corner, and the back picket be 15 chains on the other side of, that is, behind the corner, then the instrument must be moved north five times, and the back picket south fifteen times, the "deflection offset for one chain." The line of the instriument and picket is now in the correct bearing for the prolongation of the base line.

The angle is thus turned as accurately as a straight line can be produced with the instrument, and much more accurately than the angle can be measured with the graduated arc, while the setting of the instrument at the corner (which may be in low ground, unsuitable for accurate line production) is rendered unnecessary.
"Longitude covered by one range" in the seventh column is merely the longitude in the seventh column of Table III, reduced to time by dividing by 15. This gives the number of seconds which a watch will gain or lose on local time in being carried across a range. The gain or loss in travelling over any other distance along is proportional to the distance. The column is added for astronomical purposes, especially the determination of azimuth by observation of Polaris at any hour angle.

This Table V applies to the first and second systems of survey.

Table VI.

Chord Azimuths, \&c., for Base Lines, 3rd and 4th Systems of Survey.
This table is exactly similar to Table V, but is made for the third system of survey.

The calculation is made by the same formula, changing only the width of the range, which is 486 , instead of 489 chains, and using the latitudes of the base lines from Table IV, instead of those from Table III.

$$
d \lambda=\frac{486}{P \sin 1^{\prime \prime}} \quad d A=d \lambda \sin \Phi .
$$

This table also applies to the fourth system.
Table VII.
Chord Azimuths, Jogs, \&c., for Correction Lines, 1st and 2nd Systems of Survey.
This table gives quantities for correction lines similar to those given in Table III for base lines. This table applies to the firsi and second systems of survey.

The correction lines are posted on both sides of the road. The chord azimuths and deflections are given for the south side of the road, which is that side for which the latitudes of correction lines are given in Table III.

The calculation of the chord azimuth for correction lines is somewhat different from that for base lines.

For the base lines we have

$$
d \lambda=\frac{489}{P \sin 1^{\prime \prime}}
$$

deflection $=d \lambda \sin \Phi$.
For the correction lines, one range is not 489 chains, but the distance between meridians which include 489 chains on the nearest base line.

Hence in the formulæ-

$$
d \lambda=\frac{489}{P \sin 1^{\prime \prime}}
$$

and deflection $=d \lambda \sin \Phi=\frac{489}{P \sin 1^{\prime \prime}} \sin \Phi$, we must take $P \sin 1^{\prime \prime}$ for the next base line south of the correction line, if the difference of longitude and the deflection for the south side of the correction line road are required; while for the north side of that road we must take P sin $1^{\prime \prime}$ for the next base line north. Φ, of course, is the datitude of the correction line itself.

The length of one range on the correction line is $d \lambda \times P \sin 1^{\prime \prime}$
If, then, P_{1} and P_{2} represent the radius of parallel for the base lines next north and south, respectively, P that for the correction line itself

$$
\begin{aligned}
& d \lambda_{1}=-\frac{489}{P_{1}} \frac{\sin 1^{\prime \prime}}{} \\
& d \lambda_{2}=\frac{489}{P_{2} \sin 1^{\prime \prime}}
\end{aligned}
$$

and we have for the length of one range on the correction line

$$
\begin{aligned}
& \text { North side }=\frac{489}{P_{1} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime} \\
& \text { South side }=\frac{489}{P_{2} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime}
\end{aligned}
$$

of Survey.
be third system of
the width of the is of the base lines
tems of Survey.
sse given in Table zms of survey. he chord azimuths hat side for which omewhat different
' for the next base
the deflection for
$:$ the north side of Φ, of course, is the

```
e base lines next
```

The values of these quantities are tabulated in the seventh and eighth columns of Table VII.

For extreme accuracy P sin $1^{\prime \prime}$ for the north side of the road should be taken out for a latitude greater by 1.50 chains, or $0^{\prime \prime} .98$ greater than that tabulated in Table III; but the difference in the result would be almost inappreciable.

The difference of length of the township lines north and south of the correction line road gives the overlap or jog.

The jog for one range is given in the ninth column of the table. As this jog occurs in each range of townships, its value at any range is the product of the jog for one range by the number of ranges.

The excess of the length of the north side over, or the defect of the south side from 489 chains, is the Iinear divergence or convergence of the township lines. Since there are twelve half sections in a township side, the convergence or divergence for one-half section is one-:welfth of the convergence or divergence for the township, or one-twenty-fourth of the jog, the excess of the north side and the defect of the suuth side being very nearly, though not quite, equal.

This convergence or divergence for one half section is entered in the tenth column of the table. It is used in the second system, where the surplus or deficiency caused by the convergence of moridians is divided equally among all the quaiter-sections. Hence, in surveying a correction line under the second system, the width of each quarter section (exclusive of the roads) is forty chains plus or minus this tabulated quantity. The surplus or deficiency on the township line midway between the base and the correction line is half of that on the correction line.

In the first system the whole of the surplus or deficiency is thrown into the western tier of quarter sections. This surplus or deficiency is the difference between 489 chains and the quantities in the seventh and eighth columns of Table VII. For example, on the north side of the road on the lst correction line the surplus is 1.75 chains, and the westerly quarter section of the township is therefore 41.75, all the others being 40 chains.

It is to be observed that in all cases the whole divergence or convergence is applied to the section-itself, and that the road allowsnce retains its-width of 1 ohain or $1 \frac{1}{2}$ chains, with the exception of the roads on correction lines, which are subject to a widening or narrowing as hereinafter explained.

Table VIII.

Chord Azimuthis, Jogs, \&c., for Correction Lines, Third and Fourth Systems of Survey.

This table gives for the third and fourth systems the same quantities as are given in Table VII for the first and second systems.

The surplus or deficiency is in all cases divided equally among all the quarter sections.

Table IX.

Latitudes, and Widths in Chains, of Northern Boundaries of Sections in First and Second Systems of Survey.
This table gives the latitudes in degrees and decimals of a degree for the northern boundaries of all sections in the first and second systems.

The sections numbered in the second column are those adjacent to the eastern boundary of the township. The latitudes of interior sections lying west of these are the same. Thus the northern boundaries of sections $14,15,16,17$ and 18 have the same latitude as the north boundary of 13 , and so for the other east and west tiers of sections.

These latitudes are computed by converting the latitudes given in Table III into degrees and decimals, and interpolating for the intermediate lines.

The logarithmic secant and tangent of the latitude are given in the table for use in calculation of azimuth observations.

In the last column of the table are given the widths of the oorth boundaries of the quarter sections (in the second system of survey). These are calculated for the correction lines in the manner explained under Table VII, and for the intermediate
lines by interpolation.

Table X.

Latitudes and Widths in Chains of Northern Boundaries of Sections in Third and Fourth Systems of Survey. This table gives for the third system the same quantities as are given in Table IX for the first and second The table may also be applied to the fourth system by correcting the latitudes of the alternate section lines; viz., the north boundaries of sections 1,13 and 25 in each township, by subtracting therefrom $0^{\circ} \cdot 0001$, the equivalent in arc of 50 links. The change in the logarithmic secant and tangent is inappreciable, as these logarithms are given to only five places of decimals. The widths of quarter sections

Table XI.

To Reduce Chains to Decimals of a Township Side.

This is a short table giving the equivalents of chained distances in terms of a township side, for township sides of the first and second systems (489 chains), for east and west linels of the third and fourth systems (486 chains) and tor north and south lines of these last systems (483 chains). The table is useful in calculating the difference in azimuth of an east or west line between a township corver and any other point upon it, and for similar purposes.

TAbli XII. Correction to Widths of Roads on Correction Lines on Account of Curvature.

The township corners on the north and south sides respectively of the road on correction lines lie on two circles of latitude, which are one and a-half chains apart in the first and second systems, and one chain apart in the third system. The town-

Hence, since on of circles, and therefore lie north of them. road are not opposite to one another, the township corners north and south of the the township corner north of the road, ate township side south of the road will pass chain; while the township side north of the rance less than the theoretical one road at a distance greater than one chain.

The correction to the width of the road
the jog, is given in the table. The road on this account for various lengths of ship corners, varies in proportion to the distance road at points other than the town-

This table may be used where it is ristance. a correction line, by offsets fiom the other side to establish the posts on one side of

The calculation of the differences of width XIII, the difference being merely the offeet from made as described below for Table

In Table XII are also given corrections to the township chord to the parallel. offsets on correction lines (yiven in Table the chord azimuths and deflection allowance is surveyed instead of the south. When , whe north side of the road importance in surveying, except in outh. The correction is small and of little the correction lines were surveyed instead of the second system of survey, where ships, across four ranges before closing, and base lines, as the basis of the townimportance.
: are given in the table for
of the north boundaries of 'hese are calculated for the I, and for the intermediate
of Sections in Third and ties as are given in Table Y correcting the latitudes of sections 1,13 and 25 in ivalent in arc of 50 links. - inappreciable, as these widths of quarter sections

iip Side.

distances in terms of a second systems (489 lystems (486 chains) and The table is useful in lir etween a township

:count of Curvature.

rectively of the road on : and a-half chains apart hird system. The townof them.
inorth and south of the th of the road will pass an the theoretical one the corner south of the
for various lengths of ts other than the town-
:he posts on one side of
cribed below for Table p chord to the parallel. imuths and deflection north side of the road is small and of little stem of survey, where the basis of the townwas consequently of

In the first system the correction line is surveyed across two ranges as a trial line, and afterwards corrected to the true line; and in the third system the correction line is only surveged across one range at a time, and as a trial line. In these systems, therefore, the azimuth used in the survey is of little importance.

Table XIII.

Difference of Latitude between Township Corners and Section and Quarter Section Corners.

This table is used when it is required to find accurately the latitude of any point within a township, as when it is desired by connecting with an astronomically determined latitude point to find the error of the survey lines.

If A be the initial azimuth of the township chord, A^{1} its azimuth at a distance x from the corner of the township, Φ the latitade of the township corner, Φ^{1} the latitude of a point on the chord distant x from the corner.

Then by spherical trigonometry

$$
\frac{\cos \Phi^{1}}{\cos \Phi}=\frac{\sin A}{\sin A^{1}}
$$

whence

$$
\tan \frac{\Phi^{1}-\Phi}{2} \tan \frac{\Phi^{1}+\Phi}{2}=\tan \frac{A^{1}-A}{2} \cot \frac{A^{1}+A}{2}
$$

putting

$$
\begin{aligned}
& A=\frac{1}{2}(\pi-\theta) \\
& A^{1}=\frac{1}{2}\left(\pi-\theta^{1}\right)
\end{aligned}
$$

where θ and θ^{1} are expressed in circular measure, and are very small, so that their cubes may be neglected. Also $\Phi^{1}-\Phi$ is very small, and $\Phi^{1}+\Phi$ is very nearly equal to 2Φ.

$$
\text { Then } \phi^{1}-\Phi=\frac{\theta-\theta^{1}}{2} \frac{\theta+\theta^{1}}{1} \cot \Phi=\frac{\theta^{2}-\theta_{1}{ }^{2}}{8} \cot \Phi
$$

and $\theta=$ convergence-of moridianstor one township chord;
$\therefore \theta=\frac{c}{N} \tan \Phi, c$ being the length of the chord,
and $\frac{\theta_{1}}{\theta}=\frac{c-2 x}{c}, \quad$ whence $\theta^{2}-\theta_{1}^{2}=\frac{4(c-x) x}{c^{2}} \theta^{2}$
Therefore

$$
\phi^{1}-\Phi=\frac{(c-x) x}{2 N^{2}} \tan \varphi
$$

or difference of latitude in chains $=$

$$
R\left(\Phi^{1}-\Phi\right)=\frac{\boldsymbol{R}}{2 \boldsymbol{N}^{2}} x(c-x) \tan \Phi
$$

The computation has been made for the first system of survey, but may be used for any system without sensible error.

CHAPTER III.

Problems Connected with the System of Survey.

Correction for Height above Sea Level.

The tables have been calculated from the dimensions of the earth surface at sea level.

The township sides are actually measured on surfaces elevated above sea level, and therefore the differences of latitude and longitude calculated from the tables are greater than those actually covered by the township sides.

$$
13-8
$$

Any measured distance may be reduced to sea level by subtracting the correction $\frac{h}{r} x, x$ being the distance, h the elevation above sea level, and r the radius of curvature of the line under consideration.

In general N (see Table I) can be used instead of r.
Base lines when the system of survey is exactly followed are established by direct measurement from the 49th parallel, northward along an initial meridian.

Hence the latitiade of a base line should be less than that given in table by $\left.(4)-49^{\circ}\right) \frac{h}{R}$ where h is the mean elevation of the initial meridian between the 49th parallel and the base under consideration.

Many base lines, however, have been established, not by this direct measurement, but by the survey of township meridians exterior from other bases. If the actual latitudes of these base lines are required, account must be taken of the elevations of all the north and south lines through which the connection with the 49 th parallel has been made. It is obvious, however, that the average elevation of the

- country above the sea will give a sufficiently accurate result, since the small errors due to difference of elevation are masked by errors of surver.

On the base lines the effect of elevation above sea level is to decrease the difference of longitude covered by one range, and this must be allowed for in establishing an initial meridian by means of chainage along a base line, or in estimating the accuracy of measurement of a base line by its closing on an initial meridian, since the initial meridians, except the first, bave been placed on even degrees of longitude (every fourth degree).

The correction for elevation above sea level is, in latitude $51^{\circ}, 0.00382$ chains for one mile distance at an elevation of 1,000 feet, and varies directly as the elevation and distance. It changes somewhat with the latitude, but slightly, and the correction in any particular case may be taken as the same as that for latitude 51°. If extreme accuracy be required, the formula given above, $\frac{h}{r} x$ may be used.

The error in the length of township chords of course involves an elror in deflection angles and azimuths, but this is too small to be appreciable.

Latitudes and Lonaitudes of Points in the System.

By "points in the system" I mean the corners of specified sections, or points referred to them by connecting lines. In the latter case the lines, if short, may be reduced to latitude and longitude by means of "latitude and departure" from a traverse table, and by using Table XVIII.

Thus, the problem is reduced to the determination of the latitude and longitude of any section corner.

Latitude.

The latitude of the section corner can be at once found by interpolation from Table III or Table IV, according as the section is in the first, second or third system.

It must be remembered that in the first and second systems, the section posts on a meridian are 81.50 chains apart, and that in the third system they are alternately 81 and 80 chains.

The latitude can also be takev directly from Table IX or X to the fourth decimal place of degrees.

Since the section corners are presumed to be at distances of even sections from the north and south boundaries of the township, being established byosurvey from those boundaries, the latitude found as above must, when the section corner is not .on the meridian outline of the township, be increased by the correction given by Table XIII.

In the first system the sections are not measured on meridians from the north or south boundary of the township, but on lines parallel to the eastern boundary of
subtracting the corvel, and r the radius
d are established by a initial meridian. hat given in table by reridian between tho
this direct measure other bases. If the je taken of the elevasction with the 49th age elevation of the nce the small errors

3 to decrease the difowed for in establish, or in estimating the uitial meridian, since ven degrees of longi-
${ }_{3} 51^{\circ}, 0.00382$ chains ectly as the elevation htl and the correctitude 51°. If
: may be used.
res an error in deflec\because
'stem.
d sections, or points nes, if short, may be departure" from a titude and longitude
\checkmark interpolation from ;ond or third system. , the section posts on they are alternately oo the fourth decimal even sections from hed by survey from setion corner is not sorrection given by
ans from the north astern boundary of
the township. Hence theoretically the difference of latitude between the given corner and the township outline should be decreased in the ratio of cosine azimuth of the section line to unity; but this correction is practically insignificant. The correction for séa level may also be applied.

. Longitude, Third System,

In the socond and third systems the section lines are true meridians from the base line north and south two townships. Hence the longitude of a section corner is the same as that of the corresponding corner on the base line from which the township has been surveyed.

Then it d. be the longitude covered by one range on that base line, and if n be the number of the range in which the section lies, m the number of sections lying between the given section and the eastern boundary of the township, the number of ranges which intervene between the initial meridian and the eastern boundary of the given section is $n-1+\frac{m}{6}$, and the difference in longitude between it and the initial meridianis $\left(n-1+\frac{m}{6}\right)$ d久. This added to the longitude of the initial meridian gives the longitude of the eastern boundary of the section.

The longitude of the Principal or First Meridian is $97^{\circ} 27^{\prime} 08^{\prime \prime} \cdot 4$,
The longitudes of the Second, Third, Fourth, \&c., Meridians are $102^{\circ}, 106^{\circ}$, $110^{\circ}, 114^{\circ}$, \&c., subject to certain errors of survey, which cannot be discussed at present.

The difference of longitude should be corrected for height above sea if precision is required. This can be done by multiplying it by $\left(1-\frac{h}{N}\right)$

For example:

The-N:E. erraer of See. 16, Tp. 23, $R .17$, W- of-the-Fourth-Meridian (third system of survey). Here $n=17, m=3$, and the township is surveyed from the 7 th base, for which we find from Table IV $d \lambda=8^{\prime} 22^{\prime \prime} \cdot 411=502^{\prime \prime} \cdot 411$. Therefore longitude of the section line

$$
=110^{\circ}+\left(503^{\prime \prime} \cdot 411 \times 16 \frac{3}{6}\right)=112^{\circ} 18^{\prime} 09^{\prime \prime} 78
$$

The corner is three sections, i.e., 242 chains north of the 5 th correction line, and its latitude is therefore (from Table IV)
$50^{\circ} 34^{\prime} 20^{\prime \prime} \cdot 77+10^{\prime} 28^{\prime \prime} \cdot 88 \times \frac{242}{966}=50^{\circ} 34^{\prime} 20^{\prime \prime} \cdot 77+157^{\prime \prime} \cdot 55=50^{\circ} 36^{\prime} 58 \cdot 32^{\prime \prime}$.

Longitude, First System.

In the first system the procedure for the longitude is a little different. The section lines are drawn parallel to the east side of the township, so that the difference of longitude between the section line and the east boundary of the township is not the same as on the base line, but is equal to the actual distance from the boundary of the township divided by $P \sin 1^{\prime \prime}, P \sin$ " being taken from Table I for the actual latitude of the section post. Thus using the same notation as before

Diff. of longitude from initial meridian $=(n-1) d \lambda+\frac{81 \cdot 50 \times m}{P \sin 1^{\prime \prime}}, d \lambda$ being taken from Table III.(1st system) for the governing base line, or it may be calculated by the equivalent formula
diff. of longitude $=\left(n-1+\frac{n}{6}\right) d \lambda+\frac{Q}{P \sin 1^{\prime \prime}}$
where $Q=2 m(40-w), w$ being the width of quarter sections as taken from the last column of Tlable IX.

$$
13-8 \frac{1}{2}
$$

[PART .VI]

Longitude, Second and Fourth Systems.

Longitudes in the 2nd system are calculated in the same way as those in the 3rd, taking $d \lambda$ from Table Ill instead of Table IV. In the 4th system the process is the same, as for the 3rd system, and the same table is used-Table IY.

Effect of Errors of Survey:

An error in the latitude of the base line, or an error in the longitude of the initial meridian, of course increases or decreases by the amount of the error the latitude or longitude of the section corner. Similarly a chainage error on the base line affects the longitude directly. In the compatation all known errors of this kind must be allowed for.

An error in the latitude of the base line also affects the longitude corerod by 486 chains (or 489) chains measured along the base line, since 486 chains covers less longitude if the base line be moved north. The manner in which the effect of an . error of this kind may be estimated will be best shown by an example.

Suppose the 6th base line (3rd system) to be placed 10 chains too far north, we find from Table IV

$$
\begin{aligned}
& d \lambda_{\text {, }} \text { for 6th base line }=498 \cdot 662 \\
& d \lambda \text { for } 6 \text { th correction line }=500.527
\end{aligned}
$$

The 6 th correction line is two townships, i.e., 966 chains north of the 6 th base line, and the difference in $d \lambda$ for these lines is $1^{\prime \prime} \cdot 865$. Therefore, $d \lambda$ for the actual position of the 6 th base line, 10 chains north of its theoretical position, is

$$
498^{\prime \prime} \cdot 662+1^{\prime \prime} \cdot 865 \times \frac{10}{966}=498^{\prime \prime} \cdot 681
$$

The correction, in the case supposed, to $d \lambda$ for one range is $0^{\prime \prime} \cdot 019$, and in 29 ranges, (abont the distance apart of two initial meridians) it amounts to $0^{\prime \prime}: 019 \times 29=0^{\prime \prime} \cdot 55$, or 54 links.

Given the Latitude and Longitude of a point, to find its position with regard to the Survey System, i.e., to find in what section it is, and the township and range. and its distance from the $N . E$. corner of the section.

Second, Third and Fourth Systems.

This is the converse of the preceding problem. The first step is to find, in the manuer explained above, the latitude of the section line next north of the given latitude. The difference between these two latitudes is reduced to chains by Table I. This gives the distance (x) in chains to be measured from the point to find the north boundary of the section.

The number of sections by which the section line is north of the southern boundary of the township in which it lies is to be noted. Call this number a, and the number of the township t.

We also know the number of the nearcst base line, i.e. the base line on which depends the survey of township t. From table IV we take out $d \lambda$ for this base line.

From the given longitude of the point subtract the longitude of the initial meridian. Divide the difference by $d \lambda$, with quotient n and remainder r. Divide r by $\frac{d \lambda}{6}$ with quotient b and remainder s. S reduced from seconds of longitude to chains by Table I, with argument, latitude of the given point, gives the distance (y) to be measured east from the point to find the eastern line of the'section.

We now know that the given point is x chains south and y chains west of the north-east angle of somesection in township No. t and range No. $(n+1)$ west of the initial meridian; and also that the northern boundary of the section is a sections north of the southern boundary of the township, and that the eastern boundary is b sections west of the eastern boundary of the township.
ray as those in the jstem the process able IV.
e longitude of the nt of the error the error on the base errors of this kind

Igitude corered by chains covers less h the effect of an . mple. s too far north, we
th of the 6th base refore, $d \lambda$ for the sal position, is
18)

EION WITH•REGARD township and range.
p is to find, in the lorth of the given chains by Table I. point to find the

1 of the southern is number a, and
se line on which for this base line. ide of the initial nder r. Divide r s of lougitude to :s the distance (y) rection.
rains west of the $1+1$) west of the ction is a sectione arn boundary is b

It is now easy by means of a skeleton township diagram to determine the numbers of the section; e.g. if $a=5, b=3$, the section is 28 .

Without a township diagram, the section number can be found from the formula

$$
\begin{gathered}
\text { No. of section }=\frac{1}{2}\{12 a-5 \pm(2 b-5)\} \\
\text { no taken when } a \text { is odd and the lower wh }
\end{gathered}
$$

The upper sign being taken when a is odd, and the lower when a is even. These two rules are comprised in the general formula

$$
\text { No. of section }=\frac{1}{2}\left\{(12 a-5)-(-1)^{a}(2 b-5)\right\}
$$

The calculation for the second system is the same as above, using the proper tables for that system. It is also the same for the fourth system.

In this manner have been computed the positions of a great many section corners in British Columbia (fourth system of survey) with reference to points along the line of the Canadian Pacific Railway, the latitudes and longitudes of these points having been firat determined by a traverse survey.

First System of Survey.

The procedure in this system is the same as above, except that the total difference of longitude from the eastern boundary of the township (instead of the nearest section line) must be reduced to chains, and from the chain distance must be subtracted the nearest multiple of 81.50 .
Fraotional Townseip or Range between parts of the Country Surveyed under Different Systems of Survey.
Townships of the first and second systems adjoin each other without overlap or deficiency, since the townships in these two systems are of the same dimensions. Similarly of the third and fourth systems.

But where townships surveyed under the latter systems abut on townships of the first or second aystem, a fractional township or range oucuis. It is only necessary to consider the case of the third system abutting on the first or second, since the fourth does not occur in juxtaposition with these latter systems.

Fractional Township.

Townships of the third system are 6 chains shorter, measured north and south than the others. The townships in both cases are measured north from the 49th parallel, and hence the third system falls short of the other by 6 chains for each township, and the northern boundary of a township of the third system is therefore sonth of the northern boundary of the same township of the first or second system by 6 chains multiplied by the number of the township.

Thus the 5th correction line (Tp. 18), as surveyed under the third system, is $6 \times 18=108$ chains south of its position under the second system. For twelve ranges west of the Second Meridian, the territory from the 5th correction line northward to the 8th correction line was surveyed under the second system, while the country south of the former line has been surveyed under the third system. There i_{s} therefore an additional township (measuring 108 chains from north to south) lying between Township 18 of the third system and Township 19 of the second system. (This fractional township is called Township 19A, and is subdivided according to the third system. See Manual of Surveys.)

Fractional Range.

Townships of the third system are 3 chains narrower (measured east and west, along the base line) than those of the first and second systems. The overlap of the latter systems over the third, however, is not equal to 3 chains multiplied by the number of ranges, but exceeds this, since the widths are laid off along base lines which lie in different latitudes, and hence the convergence of meridians comes into play.

The readiest method of calculating this orerlap is as follows:-
Let $d \lambda_{1}$ be the longitude covered by one range of the baso line in the first or second sysitem as found from Table III.

Let $d \lambda$ be the same quantity for the base line of the third system (from Table IV).

Then $d \lambda_{1}-d \lambda$ is the difference of the longitude between the exterior meridians of range one, as surveyed under the two systems.

The difference of longitude at the eastern boundary of the nth range will be

$$
(n-1)\left(d \lambda_{1}-d \lambda\right)
$$

This reduced to chains is

$$
(n-1)\left(d \lambda_{1}-d \lambda\right) P \sin 1^{\prime \prime}
$$

$P \sin 1^{\prime \prime}$ being taken from the proper table for the latitude of the base or section line on which the overlap is required.

Example.

The meridian outline between Ranges 12 and 13, west of the 2nd Meridian, from Township 19 to Township 22, inclusive, is the western boundary of a tract of country surveyed under the second system of survey. Required the width of Range 13, as surveyed under the third system, on the northern boundaries of Townships 19, 20, 21 and 22.

The base line on which this meridian outline is based, is the 6th base line, or northern boundary of Township 20.

$$
\begin{aligned}
\text { From Table III, } d \lambda_{1} & =8^{\prime} 21^{\prime \prime} \cdot 972 \\
\text { do } \quad \text { IV, } d \lambda & =8^{\prime} 18^{\prime \prime} \cdot 662 \\
\text { wbence } d \lambda_{1}-d \lambda & =-33^{\prime \prime} \cdot 310
\end{aligned}
$$

and at the eastern boundary of the thirteenth range, the difference of longitude is $3 \cdot 310 \times 12=39^{\prime \prime} \cdot 72$.

We have then for the northern boundary of Township 19 (third system) :
Log. $39.72=1.5990092$
Table IV, Log. P кin $1^{\prime \prime}=9.9896352$
Nat number -1.5886444
For the northern boundary of Township 20 :
Log. $39 \cdot 72=1 \cdot 5990092$
Log. $P \sin \mathrm{I}^{\prime \prime}=9.9888297$
1 15878389
Nat. number $=\quad 38 \cdot 711$
For the northern boundary of Township 21 :
Log. $39 \cdot 72=1.5990092$
$\log . P_{\sin } 1^{\prime \prime}=9.9880192$
1.5870284

Nat. number $=\quad \begin{array}{r}158.639\end{array}$
For the northern boundary of Township 22 :
Log. $39 \cdot 72=1 \cdot 5990092$
Log. $P \sin 1^{\prime \prime}=9.9872086$

Nat. number
1.5862178

Hence the north boundaries of Townships $19,20,21$ and $\dot{22}$, surveyed under the third system in Range 13, have their eastern tiers of section narrowed by 38.783 , $38 \cdot 711,38 \cdot 1339$ and 38,567 , respectively.
; :
line in the first or ystem (from Table 1 exterior meridians h range will be
de base or section
the 2nd Meridian, undary of a tract ired the width of sundaries of Town-
a 6th base line, or
 d system) :

Now, the full widths of these sections when regular is got from 'rable X, by multiplying the " width of quarter section" by 2.

Thus, the width of the eastern tier of sections in Range 13 are: For Township 19, $80 \cdot 15-38 \cdot 78=41 \cdot 37$ chains.

$$
\begin{array}{lll}
\text { do } & 20,80-38 \cdot 71=41 \cdot 29 & \text { do } \\
\text { do } & 21,79 \cdot 85-38 \cdot 64=41 \cdot 21 & \text { do } \\
\text { do } & 22,79 \cdot 70-38 \cdot 57=41 \cdot 13 & \text { do }
\end{array}
$$

These widths must be increased by one chain for road, if the widths from post to post are required.

For the towaship lines to the north of the correction line, viz.: $23,24,25$ and 26, the width of Range 13 may be found in the same way, using the $d \lambda$ from Tables III and IV for the seventh base instead of the sixth.

If the width of the section on the north side of the 6th correction line is required, that is, the south boundary of Township 23 , it must be remembered that here, on account of the correction line being thrown soth, from the less depth of the townships of the new system, the southern boundary of Township 23 of the third system, which is brought from the 7th base, intersects the second system south of the correction line, i. e. on a line brought from the 6 th base.

Therefore we have
For the second system, Table III, $d \lambda_{1}$ 6th base $=8^{\prime} 21^{\prime \prime} \cdot 972$
third do do IV, $d \lambda^{\prime} 7$ th do $=8^{\prime} 22^{\prime \prime} \cdot 411$

$$
\therefore d \lambda_{1} d \lambda=-\quad 439
$$

and for twelve ranges $12\left(d \lambda_{1}-d \lambda\right)=-5^{\prime \prime}{ }^{2} 268$
With the difference of longitude $5^{\prime \prime} \cdot 268$ and the $P \sin 1^{\prime \prime}$ for the 6 th correction line, third system, we get the required jog.

It will be noticed that the overplus is negative, i. e there is a surplus. $\overbrace{\mathrm{E}} \%$, he ehs.

The heavy lines represent the second system, the dotted ones the third. The line $A^{1} B^{1}$ is the one which we have just considered; it falls to the east of $A B$, but to the west of CD.

The lines in the figure are all township lines. Thus it will be seen that there is a small piece of land, $B^{1 .} C$, which is in fact a township of itself. Its designation would be Township 23 A, Range 12.

Second Example.

Required the depth, north and south, of Township 27, Range 19, west of the Principal Meridian.

The north boundary of Township 26 is the northern boundary of a tract of country surveyed under the first system.

Since each township of the third system is 6 chains shorter north and sonth than one of the first system, the northern boundary of Township 26 in the third system is $6 \times 26=156$ chains south of the same boundury onder the first system.

Therefore the distance from the north boundary of Township 26 , first system, to the north-east angle of Soction 12, Township 27, third system, is $161-156=5$ chains.

Since 1.50 chains must be allowed for road 3.50 chains is the available width of the strip of land.

Fractional Segtions adjoining an Initial Meridian.

The longitude of the Principal Meridian is $97^{\circ} 27^{\prime} 08^{\prime \prime} \cdot 4$.
That of the 2nd Initial Meridian $102^{\circ} 00^{\prime} 00^{\prime \prime}$

$"$	3 rd	$"$	$106^{\circ} 00^{\prime} 00^{\prime \prime}$
$"$	4th	$"$	$10^{\circ} 00^{\prime} 00^{\prime \prime}$
$"$	5th	$"$	$114^{\circ} 00^{\prime} 00^{\prime \prime}$
$"$	6th	$"$	$118^{\circ} 00^{\prime} 00^{\prime \prime}$
$"$	7 th	$"$	$122^{\circ} 00^{\prime} 00^{\prime \prime}$

These longitudes are subject to correction for errors of survey, of which it is intended to treat in a future paper.

For the present purpose we shall use the above longitudes.
The difference of longitude between the first meridian and the second is $4^{\circ} 32^{\prime} 51^{\prime \prime} \cdot 6=16371^{\prime \prime} \cdot 6$, and between the others successively $4^{\circ}=14400^{\prime \prime}$.

The width of the last range in seconds on a given base line is got by subtracting from $16371^{\prime \prime} \cdot 6$ or 14400 the nearest integral multiple of $d \ddot{1}$ as given by Table III or IV (according to which system of survey is used). Thus for the width of the last range on the 5th base line between the 2nd and 3rd Initial Meridians (third system of survey) we have from Table IV $d \lambda=494^{\prime \prime} .988$ and we find, by dividing 14400 by 494.988 , a quotient 29 with remainder $45 \cdot 348$. That is, the width of Range 30 on the 5th base, or the difference of longitude between the 3 rd Initial Meridian and the meridian forming the eastern boundary of Townships 15, 16, 17 and 18, Range 30, west of the second Initial Meridian is $45^{\prime \prime} \cdot 348$. This can be converted into chains by multiplying by $\log P \sin \cdot 1^{\prime \prime}$, taken from Table IV for the section line whose length is required-whether the southern boundary of Township 15, or the northern boundary of Townships 15, 16, 17 or 18, or any of the intermediate section lines.

If the width of the last broken section be required, and if the remainder, after tracting the integral multiple of $d \lambda$ is greater than one sixth of $d \lambda$, integral multiples of $\frac{1}{6} d \lambda$. (difference of longitude covered by one section on the base line) must be subtracted until the remainder is less than $\frac{1}{6} d \lambda$. This remainder may then be converted to chains by multiplying by $P \sin 1^{\prime \prime}$ taken out of the Table for the latitude of the line under consideration. The reason for this is that the widths in seconds of longitude are the same for all sections from the base to the correction line (in the third system).

The result thus found should be corrected for the mean hoight of the base line above sea level, and also for any error in the positions of the 2nd and 3rd Meridians, relative to each other.

CHAPTER IV.

SOLUTIONS OF SOME PROBLEMS IN PRACTICAL GEODESY.

Given the latitude and longitude of a point on the earth's surface, and the distange and azimuth therefrom of a second point, required the latitude and longitude of the second point and the azimuth of the first point as seen from the second.

The earth being considered a sphere, with radius equal to the normal at the place (N), the distance (K) may be reduced to arc by the formula

$$
u^{\prime \prime}=\frac{K}{N \sin 1^{\prime \prime}}
$$

Then we have a spherical triangle formed by the two points and the north (or south) pole of the earth, the sides being the coiatitudes of the points ($90^{\circ}-\Phi$ and $90^{\circ}-\Phi^{\prime}$) and $u^{\prime \prime}$; and the angles being the azimuths counted from the north of the points from one another, aud the difference of longitude. Any three of these parts being given, the triangle may be solved by the usual formulæ of spheric trigonometry.

Since, however, the side $u^{\prime \prime}$ is very small compared with the radius of the sphere, and therefore the triangle cannot be accurately solved without logarithms of many,

Meridian.

' survey, of which it is
es.
an and the second is $4^{\circ}=14400^{\prime \prime}$.
ie is got by subtracting given by Table III or - the width of the last idians (third system of by dividing 14400 by dth of Range 30 on the itial Meridian and the 17 and 18, Range 30, onverted into chains by tion line whose length or the northern bounI section lines.
if theremainder, after integral multion bur base line) must mainder may then be he Table for the latiis that the widths in ase to the oorrection
sight of the base line. ad and 3rd Meridians,

IL GEODESY.

ARTH'S SURFACE, AND !uired the latitude and seen from the second.
to the normal at the nula
the north (or south) $)^{\circ}$ - Φ and 90° - $\left.\Phi^{\prime}\right)$ rth of the points from se parts being given, onometry.
radius of the sphere, logarithms of many,
decimal places, a more practical solution can be obtained by expanding the difference of latitude, \&c., in series:-

We then have for distances not much exceeding 20 miles

$$
\begin{aligned}
& \Phi=\Phi+u^{\prime} \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \Phi \\
& \lambda^{\prime}=\lambda-\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime} \\
& A^{\prime}=180^{\circ}+A+\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime} \sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)
\end{aligned}
$$

Where Φ and λ are the latitude and longitude respectively of the first point Φ^{\prime} and λ^{\prime} those of the second point
A the azimath of the second as seen from the first
A^{\prime} do first do second
Longitudes being counted towards the west, and azimuths from the north through east from 0° to 360°.

Correction for Spheroidal Figure.

The above formulm are derived on the assumption that the earth is a sphere. The solution for the spheroid can be obtained by applying a correction to the difference of latitude. There is no correction necessary, to the order of approximation of the formulæ given above, to either the difference of longitude or the difference of azimuth.

The spherical solution being made on a sphere whose radius is equal to the normal (N) at the place, which is the radius of the great circle perpendicular to the meridian, while the latitude is measured along the meridian, whose radius of curvature is R, the difference of latitude found as above must be multiplied by $\frac{N}{R^{\prime}}$ $=1+e^{2} \cos ^{2} \Phi$ nearly, or in other words $\Phi^{\prime}-\triangle \Phi$ must be numerically increased by $e^{2} \cos ^{2} \Phi\left(\Phi^{\prime}-\Phi\right)$.

The spheroidai formulæ then become
$\Phi^{\prime}=\Phi+u^{\prime \prime} \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \Phi$
$+e^{2} \cos ^{2} \Phi\left\{u^{\prime \prime} \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \Phi\right\}$
$\lambda^{\prime}=\lambda-\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime}$
$\dot{A}^{\prime}=180^{\circ}+A+\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime \prime} \sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)$
The values of $e^{2} \cos ^{2} \Phi$ for different latitudes, are :-

Φ	$e^{2} \cos ^{2} \Phi$	Φ	$e^{2} \cos ^{2} \Phi$	Φ	$e^{2} \cos ^{2} \Phi$	Ф	$e^{2} \cos ^{2} \Phi$	\$	$e^{2} \cos ^{2}$ \$
42	-000376	48	-000305	54	-000235	60	-000170	66	-000113
43	365	49	293	55	224	61	160	67	104
44	353	50	282	56	213	62	150	68	096
45	341	51	270	57	202	63	140	69	088
46.	329	52	258	58	191	64	131	70	080
47	317	53	247	59	181	65	122		

More Accurate Formulce for Long Distances.
The above formulæ serve for distances not greater than say twenty miles. For longer distances, up to one hundred miles, the formula are (see "Lee's Table and Formulx, Professional Papers of the United States' Engineers; and United States' Coast and Geodetic Survey, 1875," Appendix No. 19) -

$$
\begin{aligned}
& \Phi^{\prime}-\Phi=K B \cos A-R^{2} \sin ^{2} A-(\delta \Phi)^{2} D+K^{2} h E \sin ^{2} A \\
& \lambda^{\prime}-\lambda=\frac{K \sin A}{\Lambda^{\prime \prime} \sin 1^{\prime \prime} \cos \psi^{\prime}} \\
& A^{\prime}=180^{\circ}+A-\left(\lambda^{\prime}-\lambda\right) \frac{\sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)}{\cos \frac{1}{2}\left(\Phi^{\prime}-\Phi\right)}+\left(\lambda^{\prime}-\lambda\right)^{3} F
\end{aligned}
$$

Where $K=$ the distance
$B=\frac{1}{R \sin 1^{\prime \prime}}$ for the latitude of the initial point,
$C=\frac{\tan \varphi}{2 N R \sin 1^{\prime \prime}} \quad$ do
$D=\frac{\frac{3}{2} e^{2} \sin \varphi \cos \Phi \sin 1^{\prime \prime}}{\left(1-e^{2} \sin ^{2} \phi\right) \frac{3}{2}} \quad$ do
$E=\frac{1+3 \tan ^{2} \phi}{6 N^{2}}$
do
$b=\underset{\text { tude. }}{K B} \cos A$ or the first term of the expression for difference of lati-
$\delta \Phi$ is an approximate value of $\psi^{\prime}-\Phi$, computed from the first and second terms of the expression.
$N^{\prime} \sin 1^{\prime \prime}$ is taken for the latitude of the terminal point.
$\log F$, for latitude $45^{\circ}=7 \cdot 840$; for latitude $50^{\circ}=7 \cdot 792$; for latitude $55^{\circ}=7 \cdot 723$.
$\log e^{2}=7 \cdot 8305006$
$\log \sin 1^{\prime \prime}=4 \cdot 6855.749$
The computation can be made by means of Table I, but more conveniently by means of the tables of the values of B, C, D and E, which are given in the United States Coast Survey Appendix above named.

It is to be noted that in the formule given in that appendix, the azimuth is counted from the south through west, while in those I have given for the shorter distances it is connted from north through east, conformably to the general practice in Dominion Land surveys. Hence as A is increased by 180°, the sign of $\cos A$ and $\sin A$ is changed.

Formulce in Terms of Rectangular Co-ordinates.

Suppose the fatitude and longitude ($\$$ and λ) of one point to be known, and the second point to be referred to the first by rectangular co-ordinates, y in direction of the meridian and x perpendicular to it, y being positive when riseasured north from the first point, and x positive when measured west.

$$
\text { Then } \begin{aligned}
\Phi^{\prime} & =\Phi+\frac{y}{R \sin 1^{\prime \prime}}-\frac{1}{2} \sin 1^{\prime \prime} \tan \psi^{\prime}\left(\frac{x}{N \sin 1^{\prime \prime}}\right)^{2} \frac{N \sin 1^{\prime \prime}}{R \sin 1^{\prime \prime}} \\
\lambda^{\prime} & =\lambda+\left(\frac{x}{N \sin 1^{\prime \prime}}\right) \sec \Phi^{\prime} \\
A^{\prime} & =180^{\circ}+A-\left(\frac{x}{N \sin 1^{\prime \prime}}\right) \tan \Phi^{\prime}
\end{aligned}
$$

The expression for \mathscr{Q}^{\prime} contains \mathscr{Q}^{\prime}, the quantity sought, in the last term. The value of Φ^{\prime} to be used in computing this term is the approximate value of Φ^{\prime} obtained from the first two terms $\phi+\frac{y}{R \sin 1^{\prime \prime}}$.

These formula may be used for differences of latitude and longitude on a traverse survey consisting of a number of short lines.

The co-ordinates with reference to the meridian of one of the points may be computed by summing the "latitudes and departures" taken from an ordinary traverse table for the several courses.

Given the Latitudes and Longitudes of two points, to find the length and direction of their joining line.

Let ϕ and ϕ^{\prime} be the latitudes.
λ and λ^{\prime} be the longitudes.
Then ($\phi^{\prime}-\Phi$) multiplied by the factor $e^{2} \cos ^{2} \phi$ given in the table on page - , is the correction to the latitude to reduce it from the spheroid to the sphero. Half
of this correction is to be applied to each latitude, in such direction as to bring them nearer together.

We then have, calling these corrected latitudes l and l^{\prime}, and ($\left.\Phi^{\prime}-\Phi\right) e^{2} \cos ^{2} \varphi=\beta$

$$
\begin{gathered}
l=\Phi+\frac{\beta}{2} \\
\tan A=\frac{-\left(\lambda^{\prime}-\frac{\lambda}{2}\right) \cos e^{\prime}}{l^{\prime}-l-\frac{1}{2} \sin 1^{\prime \prime}\left(\lambda^{\prime}-\lambda\right)^{2} \cos ^{2} l^{\prime} \tan l} \\
l^{\prime}=\Phi^{\prime}-\frac{\beta}{2} \\
K=-\frac{\left(\lambda^{\prime}-\lambda\right) \cos l^{\prime}}{\sin A} N \sin 1^{\prime \prime} \\
A^{\prime}=180^{\circ}+A-\left(\lambda^{\prime}-\lambda\right) \sin \frac{l+l^{\prime}}{2} .
\end{gathered}
$$

$N \sin 1^{\prime \prime}$ should be taken for the mean latitude $\frac{\phi+\psi^{\prime}}{2} ;$ so also $e^{2} \cos ^{2} \Phi$, although the difference in this latter will be inappreciable unless the difforence of latitude is great.

Knowing the Latitudes and the Azimuth of one point from the oither, to find the distance.

Calculate B and l and l^{\prime} as in the last case.
Find the auxiliary angles θ and θ - u from the equations

$$
\begin{aligned}
& \tan \theta=-\frac{\tan l}{\cos A} \\
& \sin (\theta-u)=\frac{\sin l^{\prime}}{\sin l} \sin \theta
\end{aligned}
$$

Whence u is known
then $K=u N \sin 1^{\prime \prime}$.
That value of θ is to be taken which is léss than $90^{\circ}, i$. e., if $\tan \theta$ be positive (when cos A is negative) θ will be a positive angle less than 90°. If $\tan \theta$ be negative, θ will be a negative angle. In the latter case the formula

$$
\begin{aligned}
\sin (\theta-u) & =\frac{\sin l^{\prime}}{\sin l} \sin \theta \\
\text { becómes } \sin (\theta+u) & =\frac{\sin l^{\prime}}{\sin l} \sin \theta .0 \text { in this last being taken positively. }
\end{aligned}
$$

Given the Latitude of one point, the Azimuth from this to the other, and the difference of Longitude, to find the distance.

That is, given $\Phi, \lambda^{\prime}-\lambda$, and A to find $\Phi^{\prime}, A^{\prime}$ and K.
Let $d \lambda$ be the difference of longitude. I'he auxiliary angle O is computed by the formula

$$
\begin{gathered}
\tan \theta=-\sin l \tan A . \\
\text { and } \tan a^{\prime}=\frac{\tan \Phi \sin (\theta-d \lambda)}{\sin \theta} \\
\beta=\left(a^{\prime}-\Phi\right) e^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime}+\Phi\right) \\
\Phi^{\prime}=a^{\prime}+f, l=\Phi+\frac{\beta}{3}, l^{\prime}=\Phi^{\prime}-\frac{\beta}{2} \\
K=-d \lambda \frac{\cos l^{\prime}}{\sin A} N \sin 1^{\prime \prime} .
\end{gathered}
$$

э sphere, Half

Trigonometrical Levelling.

To find the elevation of one station above another by observation of the apparent altitude.

Let K represent the distance apart of the two stations, C the angle subtended by the arc joining the two stations at the earth's centre (i.e., more properly at the centre of the curvature of the are):

Let $m=$ the coefficient of refraction.
$d h=$ difference of height of the two stations.
$S=$ radius of curvature of the arc joining the stations.
$E=$ measured angle of elevation.
$\overline{\text { Then }} C=\frac{K}{S \sin 1^{\prime \prime}}$
$d h=\frac{K \sin \left\{E+\left(\frac{1}{2}-m\right) C\right\}}{\cos \{E+(1-m) C\}}$
enf S, the radius of curvature of the arc, is found from R and N, given the azimuth of the arc, in the manner explained under Table I, but for ordinary purposes
$N \sin 1^{\prime \prime}$ or $R \sin 1^{\prime \prime}$ may be used instead of S sin $1^{\prime \prime}$.
m varies in different places, being greater at the sea.coast than in the interior. It runs from about 065 to about 080 . Where accuracy is required it must be found by observation in the locality, by the method of reciprocal zenith distances, or otherwise.
Sill Taking its value at 070, the above formula becomes:

$$
d h=\frac{K \sin (E+0.43 C)}{\cos (E+0.93 C)}
$$

If the angle observed be an angle of depression instead of elevation, we have calling the observed angle D :

$$
a h=\frac{-K \sin (D-0.43 C)}{\cos (D-0.93 C)}
$$

:tion of the apparent 18 angle subtended ore properly at the
 u'y puxposes $1^{\prime \prime}$.
lan in the interior. ed it must be found enith distances, or

 Mand

1

APPENDIX—TABLES.

Table I.-Radii of Curvature of Meridians and Parallels, \&c.-Concluded.
wallels: \&c.

Latitude.	$\log N \sin 1^{\prime \prime}$.	$\log P \sin 1^{\prime \prime}$	$\log R \sin 1^{\prime \prime}$	Chains in $1^{\prime \prime}$.		Seconds in one Chain.		$\begin{aligned} & \text { English Miles } \\ & \text { in a } \\ & \text { Degree. } \end{aligned}$	
				Latiturle.	Longitude.	Latitude.	Longitude.	Latitude.	Longitude.
- 1						"	"		
6220	0-1878744	9.8546982	$0 \cdot 1872368$	1.5390	0.7156	0.6498	$1 \cdot 3973$	$69 \cdot 25$	32. 20
6230	8779	$9 \cdot 8522835$	2474	$1 \cdot 5390$	$0 \cdot 7117$	0.6498	$1 \cdot 4051$	$69 \cdot 26$	$32 \cdot 03$
6240	8814	9•8498516	2579	1.5391	$0 \cdot 7077$	$0 \cdot 6497$	$1 \cdot 4130$	$69 \cdot 26$	31.85
6250	8849	74022	2684	$1 \cdot 5391$	0.7037	$0 \cdot 6497$	1.4210	$69 \cdot 26$	31.67
6300	8884	- 49352	278!)	1-5391	0-6997	$0 \cdot 6497$	1.4291	$69 \cdot 26$	31.49
6310	8919	$9 \cdot 8424503$	2893	1.5392	$0 \cdot 6957$	$0 \cdot 6497$	$1 \cdot 4373$	69.26	$31 \cdot 31$
6320.	8954	$9 \cdot 8399475$	2997	$1 \cdot 5392$	0•6917	0.6497	1.4456	$69 \cdot 26$	$31 \cdot 13$
6330	8988	74262	3099	1.5393	0-6877	$0 \cdot 6497$	1.4540	$69 \cdot 27$	30.95
6340	9022	48866	3202	$1 \cdot 5393$	0-6837	$0 \cdot 6497$	1.4626	$69 \cdot 27$	$30 \cdot 77$
6350	9056	9.8323288	3305	1.5393	$0 \cdot 6797$	$0 \cdot 6496$	1.4712	$69 \cdot 27$	30.59
6400	9090	9.3297512	3407	1-5394	0.6757	$0 \cdot 6496$	$1 \cdot 4800$	$69 \cdot 27$	30•41
6410	9124	71546	3508	$1 \cdot 5394$	0.6717	0.6496	$1 \cdot 4888$	69•27	30-23
64.20	9158	45389	3609	1.5394	0.6676	0.6496	$1 \cdot 4978$	$69 \cdot 27$	30.04
6430	9191	$9 \cdot 8219035$	3709	1.5395	-0.6636	0.6496	$1 \cdot 5069$	$69 \cdot 28$	29.86
6440	9224	9-8192482	2809	1.5395	$0 \cdot 6596$	$0 \cdot 6496$	1-51.62	$69 \cdot 28$	$29 \cdot 68$
6450	9258	65730	3909	$1 \cdot 5395$	0.6555.	$0 \cdot 6495$	$1 \cdot 5256$	69-28	29.50
6500	9291	38774	4008	$1 \cdot 5396$	$0 \cdot 6514$	$0 \cdot 6495$	1-5351	69•28	$29 \cdot 32$
6510	9823	$9 \cdot 8111610$	4106	1-5396	$0 \cdot 6474$	0-6495	1-544i	69-28	29-13
6520	9356	9•8084240	4205	$1 \cdot 5396$	$0 \cdot 6433$	$0 \cdot 6495$	1.5544	$69 \cdot 28$	28.95
6530	9389	56659	4302	1.5397	0.6392	0.6495	$1 \cdot 5644$	69-29	$28 \cdot 77$
6540	9421	28862	4399	1.5397	0.6352	0.6495	$1 \cdot 5744$	69•29	28.58
6550	9453	9• 8000850	4496	1.5397	$0 \cdot 6311$	0.6494	1.5846	69-29	28.40
6600	9485	9•7972618	4592	$1 \cdot 5398$	$0 \cdot 6270$	0.6494	1.5949	$69 \cdot 29$	28.21
$66^{\circ} 10$	9517	44164	4688	$1 \cdot 5398$	$0 \cdot 6229$	$0 \cdot 6494$	$1 \cdot 6054$	$69 \cdot 29$	28.03
6620	9549	9•7915485	4783	$1 \cdot 5398$	$0 \cdot 6188$	0.6494	$1 \cdot 6160$	69-29	27.85
6630	9580	9•7886577	4877	1.5399	$0 \cdot 6147$	0.6494	$1 \cdot 6268$	$69 \cdot 29$	27.66
6640	9612	57439	4972	1.5399	$0 \cdot 6106$	0.6494	1.6378	$69 \cdot 30$	$27 \cdot 48$
6650	9643	$9 \cdot 7828065$	5065	1.5399	$0 \cdot 6065$	0.6494	$1 \cdot 6489$	69-30	27.29
6700	9674	9•7798454	5158	1.5400	$0 \cdot 6023$	$0 \cdot 6494$	$1 \cdot 6602$	69-30	27.11
6710	9705	68602	5250	$1 \cdot 5400$	9•5982	$0 \cdot 6493$	$1 \cdot 6716$	69-30	$26 \cdot 92$
6720	9735	38506	5342	1.5400	0.5941	0.6493	1.6833	69-30	26.73
6730	9766	$9 \cdot 7708163$	5434	$1 \cdot 5401$	$0 \cdot 6900$	0.6493	1-6951	.69•30	26.55
6740	9796	9•7677568	5525	$1 \cdot 5401$	$0 \cdot 5858$	0.6493	1.7070	$69 \cdot 31$	26-36
6750	9826	46718	5615	1.5401	$0 \cdot 5817$	0.6493	1.7192	$69 \cdot 31$	$26 \cdot 17$
6800	9856	$9 \cdot 7615610$	5705	$1 \cdot 5402$	$0 \cdot 5775$	0.6493	I. 7316	$69 \cdot 31$	25-99
6810	9886	9'7584241	5795	$1 \cdot 6402$	$0 \cdot 5734$	0.6493	1.7441	$69 \cdot 31$	25.80
6820	9916	52605	. 5883	4. 5402	0. 5692	0.6492	$1 \cdot 7569$	$69 \cdot 31$	$25 \cdot 61$
6830	9945	9.7520699	5972	1.5403	$0 \cdot 5650$	0.6492	1.7698	$69 \cdot 31$	$25 \cdot 43$
6840	$0 \cdot 1879974$	$9 \cdot 7488520$	6059	$1 \cdot 5403$	0.5609	$0 \cdot 6492$	17830	$69 \cdot 31$	25.24
6850	$0 \cdot 1880004$	56064	6147	1.5403	$0 \cdot 5567$	- 6.6492	1.7964	$69 \cdot 31$	$25 \cdot 05$
6900	0032	9•7423324	6233	1.5404	0.5525	0.6492	1.8100	69•32	$24 \cdot 86$
6910	0061	9•7390298	6319	1.5404	0.5483	$0 \cdot 6402$	1.8238	$69 \cdot 32$. $24 \cdot 67$
6920	0090	56983	6405	1.5404	0.5441	0.6492	1.8378	$69 \cdot 32$	24.49
6930	0118	9•7323371	6490	$1 \cdot 5405$	$0 \cdot 5399$	$0 \cdot 6492$	$1 \cdot 8521$	69-32	$24 \cdot 30$
6940	0146	$9 \cdot 7289460$	6574	$1 \cdot 5405$	0.5357	0. 6491	1-8666	$69 \cdot 32$	$24 \cdot 11$
6950	0174	55244	6658	1.5405	0:5315	0.6491	1.8814	$69 \cdot 32$	$23 \cdot 92$
7000	0202	$9 \cdot 7220719$	6741	1.5405	0.5273	$0 \cdot 6491$	$1 \cdot 5964$	69'32	23.73

[PARt vi]

TABLE II.
Corrections to be applied to the logarithms of $R \sin 1^{\prime \prime}$ and N sin $1^{\prime \prime}$ in Table I, for Clarke's later values of the dimensions of the earth.

Latitude.	$d\left(\log R \sin 1^{\prime \prime}\right)$.	$d\left(\log N \sin 1{ }^{\prime \prime}\right)$.	Latitude.	$d\left(\log R \sin 1^{\prime \prime}\right)$.	$d\left(\log N \sin 1^{\prime \prime}\right)$.
\bigcirc			-		
42........	-0.0000021	+0.0000063	56....	+0.0000034	+0.0000081
43.........	17				${ }_{82}$
44...........	13	${ }_{66}^{64}$	58.........	41	${ }_{84}$
${ }_{46} \times \ldots$	09	67	59...........	45	85
	05	68	60.	48	86
47.		70	61..........	51	87
48..........	$+0 \cdot 0000003$. 71	62	55	88
	07		63...........	58	89
50.	11	74	64.	61	90
	15	75		64	91
	19	76	$66 .$.	67	${ }_{93}$
53..........	${ }_{26} 3$	77	67.,.........	70	93
54...........	26	79		73	$\begin{aligned} & 93 \\ & 94 \end{aligned}$
55.........:	30	80	${ }_{70}^{69 \ldots \ldots}$	76	95
			70.	78	

TABLE III.

Latitudes, \&c., of Base and Correction Lines. 1st and 2nd Systems of Surveys.

	Number of Line.	Latitude.	$\begin{gathered} \text { Log. } \\ \mathrm{N} \sin 1^{\prime \prime} . \end{gathered}$	${ }_{\mathrm{P}}^{\log \mathrm{sin}^{\prime \prime} .}$	$\underset{\mathrm{R}}{\mathrm{Log} \mathrm{Log}_{1} " .}$	Longitude covered by 489 Chains of westing.
0	Ist Base.	$490000 \cdot 00$	$0 \cdot 1875572$	$0 \cdot 0045001$	0.1862852	803.959
$\stackrel{2}{4}$	Correction....	$1036 \cdot 86$ 2113.70		$0 \cdot 0029573$	2989	${ }^{05} \cdot 681$
6	Correction....	$3150 \cdot 52$	5707	9.9998425	3126	${ }_{09}{ }^{717}$
8	3rd Base..	$4227 \cdot 33$	5751	4-9982704	3391	10951
10	3rd Correction..	$495304 \cdot 12$	$0 \cdot 1875797$.	9.9966886	$0 \cdot 1863527$	$812 \cdot 743$
12	4th Base...	500340.89	5842	9.9950968	3662	14.552
14	Correction......	$1417 \cdot 64$	${ }_{5}^{5887}$	-9334951	3397	$16 \cdot 379$
16	${ }^{\text {5th Base.. }}$	$2454 \cdot 37$	5932	$9 \cdot 9918831$	3931	$18 \cdot 225$
18	Correction.	3531.08	5976	9•9902611	4064	20.089
20	6th Base...	$504607 \cdot 77$	$0 \cdot 1876021$	9. 98886289	$0 \cdot 1864198$	821.972
$\stackrel{22}{22}$	Correction.	$\bigcirc 5644.44$	6065	$9 \cdot 9869863$	4331	$23 \cdot 875$
$\stackrel{24}{26}$	7 th Base...	510721.09	${ }_{6}^{6110}$	9.9853334	4466	${ }_{95} 5.796$
$\stackrel{26}{ }$	Correction	$1757 \cdot 72$	${ }_{6}^{6154}$	${ }^{9} \cdot 9.9836700$	4599	${ }^{27} \cdot 737$
28	8th Base.	$2834 \cdot 33$	6199	9.9819961	4733	$29 \cdot 698$
30	8th Correction.	513910.92	$0 \cdot 1876243$	$9 \cdot 9803116$	$0 \cdot 1864867$	$831 \cdot 678$
32	${ }^{9 \text { th }}$ Base.	4947.49	6287	9.9786163	4998	33.680
34	Correction.	520024.04	6332	9.9769104	5131	$35 \cdot 701$
-36	10th Base..	$1100 \cdot 57$	${ }^{6376}$	$9 \cdot 9751934$	5264	$37 \cdot 744$
38	Correction.	2137.08	6420	9.9734657	5395	39•808
40	11th Base	$523213 \cdot 57$	0.1876464	$9 \cdot 9717267$	0.1865529	$841 \cdot 894$
42	Correction	4250.04	6508	$9 \cdot 9699768$	5661	$44 \cdot 001$
44	12th Base. .	$5326 \cdot 49$	6552	$9 \cdot 9682156$	5791	$46 \cdot 130$
46	Correction.	$530402 \cdot 92$	6595	9•9664429	5920	$48 \cdot 282$
48	13th Base..	$1439 \cdot 33$	6640	9•9646592	6055	$50 \cdot 456$

$N \sin 1^{\prime \prime}$ in Table I 3 earth.

in $1^{\prime \prime}$).	$d\left(\log \mathrm{~N} \sin 1^{\prime \prime}\right)$.
10034	+0.0000081
37	82
41	84
45	85
48	86
51	87
55	88
58	89
61	90
64 67	91 93
70	93
73	94
76	95
78	96

ystems of Surveys.

cog_{1}	$\begin{aligned} & \text { Longitude } \\ & \text { covered } \\ & \text { by } 489 \text { Chains } \\ & \text { of westing. } \end{aligned}$
	,
1862852	803.959
2989	05.681
3122	$07 \cdot 421$
3256	$09 \cdot 177$
3391	10951
1863527	$812 \cdot 743$
3662	$14 \cdot 552$
3797	$16 \cdot 379$
3931	$18 \cdot 225$
4064	20.089
1864198	821.972
4331	$23 \cdot 875$
4466	25•796
4599	$27 \cdot 737$
4733	29-698
. 864867	$831 \cdot 678$
4998	$33 \cdot 680$
5131	$35 \cdot 701$
5264	$37 \cdot 744$
5395	$39 \cdot 808$
865529	841.894
5661	$44^{\prime} 001$
5791	$46 \cdot 130$
5920	$48 \cdot 282$
6055	50.456

TABLE IV.

Latriddes, \&re., of Base and Correction Lines.
(Third System of Survey.)

[^1]Chord Azimuths, Deflections, Deflection Offsets, \&c., for Base Lines.

	${ }_{\text {Number of }}^{\substack{\text { Supe } \\ \text { Buse Line }}}$
- ¢	
	䩃
(ex	
\#\#e	
	Namber of

$\stackrel{\text { \％}}{\text { \％}}$	离	dugmaid $_{\text {diomam }}$		ำํํ		路\％あ	訾
	\％				Pempe		
	\％	¢		\％\％	ETY		\％
	$\begin{aligned} & \text { à } \\ & \stackrel{a}{4} \end{aligned}$						
	cion						
景	豆			）		\％${ }^{\text {¢ }}$	
8			－				
	皆	－mas	－			Hixizi	
	免						
	免						
	亳				꾸T	ลสสูงส	

菏	－п！чвимод jo sequans			죾
	－иo！noas Jiey до ө๐ияรงรлиор		$\begin{aligned} & 19 \text { Not } \\ & \text { ining } \end{aligned}$	$\begin{aligned} & 201 \\ & \text { co } \\ & \text { Hen } \end{aligned}$
B	8		∞	$\begin{aligned} & \text { 䈓萝 } \\ & \text { in } \end{aligned}$
\pm	\therefore－			

'XI MIGVI

	ロッロ゚かった க －．．．．．．	のか，$\infty \infty \infty$冎	． 우․		$\infty \times 10$ かぁcoorid污	○めか 0 क्षి	궁성ㅇㅇㅇㅇ तHmROO $\stackrel{-1}{9}$		
			．		$80 \cdot 000.0$ ，			＊	－
$\underset{\underset{\sim}{r}-1}{\stackrel{e}{x}}$	ジざに6．829 덩ㅇㅇ N	NㅅN옼ㅋ 			$\stackrel{\infty}{6}$	$\stackrel{8}{\circ}$	 웅	88 0 0	$\stackrel{\circ}{\circ}$
	－		．		60000.0				
苞	$\stackrel{\stackrel{0}{0}}{0}$ $\stackrel{8}{2}$	ఇ유구웅웅	$\stackrel{\rightharpoonup}{\underset{0}{-}}$	命	$\stackrel{\text { \％}}{\circ}$	䓂		$\stackrel{18}{\circ}$	に $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{0}{\circ}$
	Nかに心が $\stackrel{\circ}{9}$			ㅇㅇㅇ잉ㅇㅇㅁㅇㅇ 	－ 둥유슈귝				
定		－							－ㄸ్入¢
＇त！̣ysumol	∞	\bigcirc	\cdots	ञ	$\stackrel{m}{\sim}$	\cdots	$\stackrel{20}{9}$	$\stackrel{0}{-1}$	$\stackrel{-}{\square}$

－so！nepunog पәeө јо Sivpunog q̧．

＊	＊	出	${ }_{\omega}^{*}$	to		8	\％	\％	\pm	Township．
全匂けー				\％\％\％¢		\％皆があた－	\％\％	\％\％siswn		
	シ9\％ 	\％omeccos 				： ： 	 	中出出出会监 Nか？	Wisw wix かも	苞
『ニゴが	晏 	웅 4	0 0 0 0 介゚がった品禺	－i 署			$\begin{aligned} & \text { O} \\ & \text { 萹 } \end{aligned}$ 	掝 		¢ $\stackrel{1}{*}$ \sim
	0．000 02							$0 \cdot 00002$		
	$\stackrel{\because}{\underset{\sim}{*}}$ givicem		$\stackrel{\stackrel{i}{⿺}}{\substack{\circ \\ \hline}}$ 			O O O 	$\stackrel{\ominus}{\dot{8}}$ ＊			¢ 0 0
	0.00003			r				$0 \cdot 00003$		
¢\％\％				48： 		© 		＋ 	우우울..	

دن	－	－		Townshil．
			8	咢
		운엉웅웅은 	篤	
	$\stackrel{0}{\dot{x}}$ があだなが		¢ $\stackrel{\text { ¢ }}{6}$ 8	\％ \sim \sim \sim
	$0 \cdot 00002$			
			¢ ¢ O． Of	－
	$0 \cdot 00003$			
	古家 			

あ	－	Township．
		\％ 0 0 0 0
웅 		
		H
出 울웅앙윤융엉		

[PART VI]					 		융웅행청웡용	 官	 $\stackrel{\circ}{9}$		
		｜rers				80000.0 ，					
		$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$		 	gion $\stackrel{8}{\circ}$ 8 -	$\stackrel{H}{6}$	$\stackrel{\text { P1 }}{\stackrel{\circ}{\circ}}$			？	
						60000.0				－	
		－		$\stackrel{\text { è }}{\circ}$		がったがぁデ $\stackrel{9}{\circ}$	우궁ㅇㅇ여옹 $\stackrel{9}{\stackrel{\circ}{\circ}}$		98989 $\stackrel{\rightharpoonup}{\square}$	に式が号こ $\stackrel{\text { O}}{\stackrel{2}{\circ}}$	
			$\stackrel{\circ}{\square}$			 			ஜ¢		
		． B． 苟		－	－		－Tponcince			－	
		－¢！¢stmoit		40	－	∞	σ	9	\cdots	－	

th ndary of each

80000.0

※
※ !
\%
8\%
${ }^{30}$ чıpis pue coot?ös qi

\square

TABLE X—Continued.
Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

害	Section.	Latitude ${ }^{\text {. }}$	Sec ${ }^{\text {¢ }}$.	$\begin{aligned} & \text { Difference } \\ & 10 \text { for } \\ & 10 \text { hains. } \end{aligned}$	Tan ${ }^{\text {¢ }}$.	$\begin{gathered} \text { Difference } \\ \text { for } \\ 10 \text { Chains. } \end{gathered}$	Quarter Section.
	$\begin{aligned} & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	$\begin{array}{r} 54^{\circ} \cdot 5454 \\ 5598 \\ 5745 \\ 5889 \end{array}$	$\begin{array}{r} 0.23653 \\ 68 \\ 84 \\ 99 \end{array}$		$\begin{array}{r} 0.14746 \\ 69 \\ 69 \\ 0.14816 \end{array}$		40.043 029 014 000
65	$\begin{aligned} & 12 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	6036 6180 6327 6471 6618 6762	$\begin{array}{r} 0 \cdot 237 \quad 15 \\ 30 \\ 46 \\ 61 \\ 77 \\ 92 \end{array}$		$\begin{array}{r} 39 \\ 63 \\ 86 \\ 0 \cdot 14909 \\ 33 \\ 56 \end{array}$		$\begin{aligned} & \mathbf{9 8 6} \\ & 971 \\ & 957 \\ & 942 \\ & 982 \\ & 913 \end{aligned}$
66	1 12 13 24 25 25	6909 7053 7199 7344 7490			80 0.15003 26 26 50 73		
	36	7635	86		96		$\left\{\begin{array}{l}39 \cdot 87 \\ 40.175\end{array}\right.$
67	$\begin{aligned} & 1 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	7781 $-\quad 7926$ 8072 8217 8363 8508	$\begin{array}{r} 0 \cdot 23902 \\ 17 \\ 33 \\ 49 \\ 64 \\ 80 \end{array}$		$\begin{array}{r} 0.15120 \\ 43 \\ 67 \\ 9 . \\ 0.15213 \\ 37 \end{array}$		- $\begin{array}{r}161 \\ 146 \\ 131 \\ 117 \\ 102 \\ 088\end{array}$
68	$\begin{aligned} & 12 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	8654 8799 8945 9090 9236 9281	$\begin{array}{r} 96 \\ 0: 24011 \\ 27 \\ 43 \\ 58 \\ 74 \end{array}$	$\begin{aligned} & \text { 앙 } \\ & 0.8 \\ & 0 \end{aligned}$	60 80 84 0.153 7 31 54 77 78	\%	073 058 054 029 029 000
69	1 12 13 13 24 25 36	$\begin{array}{r} 9527 \\ 9672 \\ 9818 \\ 9962 \\ 550 \cdot 0109 \\ 0253 \end{array}$	r 0.24105 21 27 37 53 68	.	$\begin{array}{r} 0 \cdot 15401 \\ 24 \\ 48 \\ 71 \\ 75 \\ 0 \cdot 1.5518 \end{array}$		$\begin{array}{r} 39 \cdot 985 \\ 971 \\ 956 \\ 991 \\ 992 \\ 912 \end{array}$
70	1 12 13 24 24 24 36	0400 05004 06991 0935 0982 0982 1126	$\begin{array}{r} 84 \\ 0 \cdot 24200 \\ 16 \\ 31 \\ 47 \\ 63 \end{array}$		42 45 69 89 0.156 36 36 59		$\begin{array}{r} 898 \\ 883 \\ 868 \\ 854 \\ 839 \\ \left\{\begin{array}{r} 39.824 \\ 40.177 \end{array}\right. \end{array}$
71	$\begin{aligned} & 1 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	1274 1417 1563 1788 1854 1999	$\begin{array}{r} 79 \\ 95 \\ 0.24331 \\ 26 \\ 42 \\ 42 \\ 58 \end{array}$		r 0.157 .06 30 30 53 77 0.15800		163 148 143 118 104 089
72	$\begin{aligned} & 12 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	$\begin{aligned} & 2145 \\ & 2290 \\ & 2436 \\ & 2581 \\ & 2727 \\ & 2872 \end{aligned}$	$\begin{array}{r} 74 \\ 90 \\ 0.24406 \\ 22 \\ 38 \\ 38 \end{array}$		24 24 47 71 94 0.159 18 41		40.074 059 044 030 030 015 000

TABLE X-Concluded.
Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Concluded.

	Section.	Latitude Φ.	Sec $\Phi^{\text {. }}$	$\begin{aligned} & \text { Difference } \\ & 10 \text { for } \\ & 10 \text { Chains. } \end{aligned}$	Tan ${ }^{\text {® }}$	$\begin{aligned} & \text { Difference } \\ & \text { for } \\ & 10 \text { Chains. } \end{aligned}$	Quarter Section.
82	${ }_{36}^{25}$	$566^{\circ} 0581$ 0726	0.25309 26		$\begin{aligned} & 0.17196 \\ & 0.172 \end{aligned}$		$39 \cdot 924$ 909
	1 1 12 13 24 25 24	0872 1017 1163 1308 1451	$\begin{array}{r} 42 \\ 58 \\ 75 \\ 91 \\ 0.25408 \end{array}$.	$\begin{array}{r} 44 \\ 68 \\ 99 \\ 0.173 \quad 15 \\ 39 \end{array}$		$\begin{array}{r} 893 \\ 878 \\ 863 \\ 848 \\ 833 \end{array}$
	36	1599	24		63		$\left\{\begin{array}{l}39 \cdot 817 \\ 40 \cdot 185\end{array}\right.$

TABLE XI.
To Convert Chains into Decimals of a Township Side.

	Equivalent Decimal of a Township Side.			妾	Equivalent Decimal of a Township Side.		
	Side $=489{ }^{\text {c }}$.	Side $=186{ }^{\text {c }}$.	Side $=483{ }^{\text {c }}$.		Side $=489 \mathrm{c}$.	Side $=486{ }^{\circ}$.	Side $=483 \mathrm{c}$.
1	0.00204	$0 \cdot 00206$	0.00207	30	0.06135		
2	-00409	-00412	-00414	40	${ }^{-} \cdot 08180$	0.06173 .08230	0.06211 .08282
3	-00613	- 00617	-00621	50	-10225	-10288	-10352
4	-00818	- 00823	-00828	60	- 12270	- 12346	- 12422
5	-01022	-01029	-01035	70	-14315	- 14403	- 14493
${ }_{6}^{6}$	-01227	-01235	- 01242	80	- 16360	-16461	- 16563
7	-01431	-01440	-01449	90	- 18405	-18519	-18634
8	-01636	-01646	-01656	100	-20450	- 20576	20704
$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	-01840	-01852	-01863	200	- 40900	- 41152	-41408
10 20	.02045 .04090	-02058	. 0.04141	300	- 61350	-61728	-62112
20	-04090	- 04115	-04141	400	-81800	-82305	- 82816

TABLE XII.

Corrections to be applied to the tabular quantities in Table No. VII when the north side of the road allowance on Correction Lines is run instead of the south; also correction to road allowance on account of curvature.

			Correction to width of road allowance on account of curvature.									
			$\begin{aligned} & \hline \text { jog } \\ & =30 \\ & \text { chs. } \end{aligned}$	$\begin{gathered} \text { jog } \\ =40 \\ =\text { chs. } \end{gathered}$	$\begin{aligned} & \text { jog } \\ & \begin{array}{c} \text { chs. } \end{array} \end{aligned}$	$\begin{aligned} & \text { jog } \\ & \stackrel{\text { chs. }}{=60} \end{aligned}$	$\begin{aligned} & \text { jog } \\ & \stackrel{\text { chs. }}{=70} \end{aligned}$	$\begin{aligned} & \text { jog } \\ & \stackrel{\text { jog }}{\text { chs. }} \end{aligned}$	$\begin{aligned} & \text { jog } \\ & \begin{array}{c} \text { chs. } \end{array} \end{aligned}$	$\begin{aligned} & \text { jog } \\ & =100 \\ & \text { chs. } \end{aligned}$	$\begin{gathered} \text { jog } \\ =\text { chs. } \\ \text { chs. } \end{gathered}$	$\begin{gathered} \text { jog } \\ =\text { chs. } \\ \hline \end{gathered}$
	"	inches.	lks.	Iks.	lks.	lks.	Iks.	liks.	lks.	Iks.	1 ks .	1 ks .
1st.	-13	+0.010	2.5	3.2	3.9	4.6	5.2	5.8	6.4	$7 \cdot 0$	$7 \cdot 5$	$7 \cdot 9$
1th	-1.7	$+0.013$	$2 \cdot 8$	3.7	4.5	52	6.0	6.7	$7 \cdot 3$	$7 \cdot 9$	$8 \cdot 5$	$8 \cdot 9$
21st	-2.2	$+0.017$	3.2	$4 \cdot 2$	5.2	6.0	6.9	7.7	8.4	$9 \cdot 1$	$9 \cdot 8$	10.4
31st.	$-2 \cdot 9$	+0.022	3.7	4.8	$5 \cdot 9$	$6 \cdot 9$	$7 \cdot 9$	8.8	$9 \cdot 6$	10.4	11.2	11.9

TABLE XIII.

Showing the difference of Latitude between Township Corners and Section and Quarter Section Posts on a Townsbip Chord.

| Number of Line. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^0]: W. F. KING, Chief Astronomer.
 J. S. DENNIS,
 E. Deville, Esq.,

[^1]: \triangle sTGVL

